Vinyl Epoxides: Reagents for Radical-induced DNA Cleavage

Anthony P. Breen and John A. Murphy*
Department of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Abstract

Allyloxyl radicals, formed by addition of thiyl radicals to vinyl epoxides, function as DNA-cleaving agents. Radical-induced damage to DNA is normally caused either by hydrogen-atom abstraction from deoxyribose or addition to the π-bonds of the heterocyclic bases. Model studies showed that allylo radicals could effect both hydrogen-atom abstraction and addition to simple alkene π-bonds (but ... product of addition to the π-bonds of adenine was observed). Importantly, this model chemistry could be performed in water at room temperature, and using enzymic formation of glutathionyl radicals. An intercalating vinyl epoxide 35 bound to $\Phi \times 174$ supercoiled DNA caused cleavage when activated by glutathionyl radicals. The potential use of epoxide 35 in reversing the radiation resistance of tumours with a high local concentration of glutathione is discussed.

Ozols has shown that certain tumour cell lines which manifest resistance to radiotherapy have very high intracellular levels of glutathione. ${ }^{1}$ Since glutathione (GSH) both quenches harmful reactive entities such as hydroxyl radicals ${ }^{2}$ which are produced during radiotherapy by radiolysis of water, and quenches radicals formed on DNA following interaction with these harmful radicals, it suggests that this quenching reaction may be responsible for the resistance. We now propose ${ }^{3}$ a method for reversing this protection by allowing the glutathionyl radicals, which are not capable of damaging DNA, to add to a vinyl epoxide located near to DNA.

Thiyl radical addition to a vinyl epoxide gives rise to an epoxycarbinyl radical 1. The epoxide can then fragment via C-O bond cleavage ${ }^{4}$ to give an allyloxyl radical 2. By analogy

with the hydroxyl radical, such an oxygen-centred radical might be very reactive and capable of damaging DNA. If the vinyl epoxide were attached to a DNA binding agent, then activation by GS' would produce the reactive oxy-radical in the vicinity of DNA, enhancing the possibility of damage to DNA

Hydroxyl radicals are known to attack DNA in two ways ${ }^{5}$ (a) via hydrogen atom abstraction from the deoxyribose sugar ring, eventually leading to cleavage of the DNA backbone, ${ }^{6}$ and (b) via addition to the π-bonds of the DNA bases. ${ }^{7}$ Allyloxyl radicals ${ }^{4 c, 8}$ have alternative reactions available to them not available to hydroxyl radicals, and so studies were first undertaken to probe the ability of allyloxyl radicals to perform the types of reactions which lead to cleavage of DNA.

Modelling of hydrogen atom abstraction from DNA sugars was accomplished by synthesis ${ }^{9}$ of a non-cyclic ether analogue 7 of a DNA deoxyribose sugar, in six steps from butane-1,4-diol. After thiyl radical attack on the vinyl epoxide, the resulting oxyradical is favourably placed to abstract hydrogen from the carbon α to the ether oxygen via a six-membered transition state. ${ }^{10}$ This mimics hydrogen abstraction from the positions adjacent to an oxygen atom in the deoxyribose of DNA. Photolysis of diphenyl disulfide (giving phenylthiyl radicals) and compound 7 in benzene did indeed, after addition to the epoxide, effect the desired abstraction of hydrogen.

The presence of the resulting radical 8 was confirmed via standard 5-exo cyclisations A and B onto the two available double bonds to give compounds 10 and 11 as the major products. Cyclisation A followed by a $1,6-\mathrm{H}$ shift, loss of $\mathrm{PhS}{ }^{*}$

Scheme 1 Reagents and conditions: i, diol (10 mol equiv.), dihydropyran, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, 7 \mathrm{~h}$; ii, $\mathrm{TsCl}(1.5 \mathrm{~mol}$ equiv.), pyridine (2 mol equiv.), $\mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$; iii, but-3-en-l-ol (2 mol equiv.), $\mathrm{Bu}^{t}{ }_{4} \mathrm{NHSO}_{4}, \mathrm{PhH}, 12.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}, 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$; iv, Dowex (H^{+}), $\mathrm{MeOH}, 60-65^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{v},(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-65$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h} ;$ vi, $\mathrm{BnEt}_{3} \mathrm{NCl}, 10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20$ to $0^{\circ} \mathrm{C}$, 30 min
and tautomerism of the enol thus formed gave ketone 9 , observed in trace amounts; addition of thiophenol or PhS 號 enone 9 gave ketone 10. Formation of radical 8 shows that the allyloxy radicals do abstract hydrogen from carbon atoms adjacent to oxygen as in deoxyribose, and hence should be able to effect damage or cleavage of DNA by this mechanism. ${ }^{11}$

Two by-products of the above reaction were the bisphenylthio compounds 12 and 13. A possible way in which these compounds could have arisen is shown in Scheme 3.

To model oxy-radical additions onto the π-bonds of DNA bases, compound 14 was synthesized in 2 steps from pent-4-en1 -ol. Addition of allyloxy radicals generated in this way onto the simple double bond ${ }^{12}$ proved to be quite easy. Generation of thiyl radicals from thiophenol with (a) azoisobutyronitrile

Scheme 2 Reagents and conditions: i, $\mathrm{Ph}_{2} \mathrm{~S}_{2}$ (1 mol equiv.), $\mathrm{PhH}, h v$ (UV), $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii, PhSH

13
(AIBN) and heat or (b) oxygen at room temperature, in the presence of epoxide 14, gave smooth 5 -exo cyclisation onto the double bond, producing mainly the substituted tetrahydrofuran 15 and some of the quenched alcohol 16. Thus, quenching of the allyloxyl radical by thiol, a very fast intermolecular reaction, does not suppress the addition to the alkene. Accordingly, provided (i) that the allyloxyl radical can be positioned close to a DNA base, and (ii) that the concentration of free thiol is

Scheme 4 Reagents and conditions: i, $\mathrm{PCC}, \mathrm{NaOAc}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2 h ; ii, 6, $\mathrm{BnEt}_{3} \mathrm{NCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH},-25$ to $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; iii, PhS' (A) PhSH, AIBN, THF, $67^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (B) $\mathrm{PhSH}, \mathrm{O}_{2}$, hexane, $25^{\circ} \mathrm{C}, 3$ days
not very high (as is likely for the in vivo case), damage to DNA should result.

To generate a closer model, the adenine derivative 22 was next synthesized as shown (Scheme 5). Treatment of this molecule with phenylthiyl radicals generated from thermolysis

Scheme 3 Reagents: i, PhS^{*}; ii, $\mathrm{Ph}_{2} \mathrm{~S}_{2}$

Scheme 5 Reagents and conditions: i, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMSO}, \mathrm{Pr}^{\mathrm{i}} \mathrm{NEt}_{2},-63^{\circ} \mathrm{C}$; ii, 6, $\mathrm{BnEt}_{3} \mathrm{NCl}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH},-20$ to $0{ }^{\circ} \mathrm{C}, 10$ \min; iii, TBAF, THF, 2 h ; iv, imidazole, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, 5 \mathrm{~h}$; v, adenine, NaH, DMF, $60-70^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; vi, PhSH , AIBN, MeCN, MeOH, reflux, 30 h

Scheme 6 Reagents and conditions: i, diol (i0 mol equiv.), TBDPSCl, imidazole, DMF, 18 h ; ii, $(\mathrm{COCl})_{2}, \mathrm{DMSO}^{2}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-70$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, 6, $\mathrm{BnEt}_{3} \mathrm{NCl}, 10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15$ to $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; iv, TBAF, THF, 3 h
of AIBN in the presence of thiophenol led to opening of the epoxide ring. However, the products isolated suggested that this ring-opening had occurred to a major extent by nucleophilic attack of the thiol rather than by a radical reaction. No products were detected resulting from attack at $\mathrm{C}-8$ on the imidazole ring of adenine, or from attack on C-4 of the adenine; interestingly, although attack of hydroxyl radical on adenine has a very high rate constant, very low yields of products are isolated from this reaction. ${ }^{5 b}$ (Note: C-4 is the principal site of attack for HO^{-} on adenine, and $\mathrm{C}-8$ is the minor site; however, the product is unstable and readily undergoes cleavage of the $\mathrm{C}-\mathrm{O}$ bond). ${ }^{13}$

The conditions used in the model reactions so far discussed differ markedly from those required for an in vivo study. To be biologically useful the desired radical-induced activation of epoxide must be achievable at ambient temperature and in water. The water-soluble compound 28 , synthesized in four steps from triethylene glycol, was selected as a substrate to test for the addition of thiyl radicals to a vinyl epoxide under these conditions.

Photolysis of bis(2-hydroxyethyl) disulfide in the presence of the alcohol 28 in water gave the oxy-radical 29 , whose formation was established by a characteristic β-cleavage reaction to give diol 30 and aldehydes 31 and 32, as well as triol 33 formed by hydrolysis of the epoxide (Scheme 7). (Performing the reaction in acetonitrile allowed isolation of sulfides 30 and 31.) This confirms that simple vinyl epoxides can indeed undergo radical activation by thio radicals at ambient temperature in water. Formation of diol 30 as shown permits a hydroxyethylthio radical to be formed from the corresponding disulfide; the thio radical thus takes part in a chain reaction, although we have not measured the efficiency of this chain.

Encouraged by the success of these model studies, we now sought to effect cleavage of DNA with a vinyl epoxide. The compound chosen was the phenanthrolinium salt 35 , which was synthesized from tosyl ester 34. Phenanthrolinium salts can act as intercalators ${ }^{14}$ and the positive charge will lead to attraction to the phosphate ions on the DNA periphery. On activation with a thiyl radical, the oxyl radical 36 should be produced
and this oxyl radical should be very slow to add to the phenanthrolinium ring system, since both are electrophilic.

To make the test as biologically relevant as possible, the glutathionyl radical was used as the required thiyl radical and was generated by enzymic ${ }^{15}$ means by using horseradish peroxidase (HRP). The incubation with DNA derived from $\Phi X 174$ led to the electrophoretogram shown (Fig. 1).

As seen in the electrophoretogram (lane 1), the commercial DNA from $\Phi \times 174$ exists principally as the supercoiled closed circular duplex of Form I, but with some Form II present. Lane 2 represents a control to show that molecule 35 cannot effect cleavage of DNA on its own under these conditions. It might have been assumed that compound 35 could act as an electrophilic alkylating agent, and that cleavage of DNA would result. ${ }^{16}$ Lanes 3 and 4 show that neither glutathione nor hydrogen peroxide can, on their own, effect cleavage of DNA. Lane 5 shows that, under the established conditions for formation of glutathionyl radical with horseradish peroxidase, ${ }^{15 a}$ but in the absence of compound 35 , no cleavage occurs.

Lanes 6-8 demonstrate that cleavage of DNA to the nicked Form II and to a lesser extent to the linear Form III occurs when the glutathionyl radicals and vinyl epoxide 35 are present. This shows that a combination of vinyl epoxides and thiyl radicals constitutes a novel system for cleavage of DNA. In lanes $9-12$, we investigate the exposure of DNA to ten-fold lower concentrations of enzyme, of glutathione, and of hydrogen peroxide. Under these conditions, we cannot see a noticeable difference between the control lane 9 in which no epoxide is present and the lanes $10-12$ where the epoxide is present. This means that, at these concentrations, we are not able to detect cleavage of DNA. Cleavage is presumably still occurring but at a slower rate. This is reasonable since the concentrations of enzyme, of hydrogen peroxide, and of glutathione have been dropped substantially, so a significant decrease in radical flux is expected.

In summary, our modelling studies have shown that allyloxyl radicals produced by addition of thio-radical to vinyl epoxides do have the capacity to abstract hydrogen from DNA sugars as

Scheme 7 Reagents and conditions: i, MeCN or water, $h \nu$ (UV), $0-40^{\circ} \mathrm{C}, 7$ days; ii, water

2	3	4	5	6	7	8	9	10	1112
1	1	1	1	1	1	1	1	1	1

Fig. 1 Lane 1: DNA alone. Lane 2: DNA $+2 \mathrm{mmol} \mathrm{dm}{ }^{-3} 35$. Lane 3: DNA $+82 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ GSH. Lane 4: DNA +0.82 mmol $\mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{O}_{2}$. Lane 5: $82 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{GSH}+0.82 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{O}_{2}+$ $0.8 \mathrm{mg} \mathrm{cm}^{-3}$ HRP. Lane 6: As Lane 5 plus $2 \mathrm{mmol} \mathrm{dm}{ }^{-3} 35$. Lane 7: As Lane 5 plus $200 \mu \mathrm{~mol} \mathrm{dm}^{-3}$ 35. Lane 8: As Lane 5 plus $20 \mu \mathrm{~mol} \mathrm{dm}^{-3}$ 35. Lane 9: $8.2 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{GSH}+82 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{O}_{2}+0.08 \mathrm{mg}$ cm^{-3} HRP. Lane 10: As Lane 9 plus $2 \mathrm{mmol} \mathrm{dm}^{-3}$ 35. Lane 11: As Lane 9 plus $200 \mu \mathrm{~mol} \mathrm{dm}^{-3}$ 35. Lane 12: As Lane 9 plus $20 \mu \mathrm{~mol} \mathrm{dm}^{-3} 35$. Loading $0.5 \mu \mathrm{~g}$ DNA per lane ($14 \mathrm{nmol} \mathrm{dm}{ }^{-3}$). All reactions were performed in $0.25 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{NH}_{4} \mathrm{OAc}$ buffer ($10 \mathrm{~mm}^{3}$; pH 7.05) at $25^{\circ} \mathrm{C}$ for 1 h , under oxygen. Electrophoresis was performed on a 0.8% agarose gel at $100 \mathrm{~V}\left(3.7 \mathrm{~V} \mathrm{~cm}^{-1}\right)$ for 3 h (running buffer: $1 \times$ TAE: 40 $\mathrm{mmol} \mathrm{dm}{ }^{-3}$ Tris Acetate $+1 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ EDTA, pH 8.2 ; ethidium bromide added).
the first step in known reaction pathways to cleavage of the DNA sugar phosphate backbone. We have shown that these radicals can be produced in water at ambient temperature.

Further, it has been shown that a vinyl epoxide attached to a DNA intercalator can cleave Φ X174 DNA in the presence of glutathionyl radicals formed in an enzyme reaction. As these radicals are formed at high concentrations when certain cancer cells containing high levels of glutathione are irradiated, it is proposed that compounds of this type may have dual action as antitumour agents, (a) in radiotherapy as described above and (b) in chemotherapy as alkylating agents. ${ }^{16}$ Preliminary results have recently indicated promising antitumour activity against various ovarian cancer cell lines. ${ }^{17}$

Experimental

M.p.s were measured on a Kofier hot-stage apparatus unless otherwise indicated. Microanalyses were determined using a Perkin-Elmer 240B elemental analyser. UV spectra were recorded on a Philips PU 8720 spectrometer. IR spectra were recorded on a Perkin-Elmer 1720-X FTIR spectrometer. ${ }^{1} \mathrm{H}$ NMR (${ }^{13} \mathrm{C}$ NMR) spectra were recorded at 80 MHz on a Bruker WP80SY, at $90 \mathrm{MHz}(22.5 \mathrm{MHz}$) on a JEOL FX90Q, at 250 MHz on a Bruker WM250, at $270 \mathrm{MHz}(67.5 \mathrm{MHz})$ on a JEOL EX270, and at $400 \mathrm{MHz}(100 \mathrm{MHz})$ on a Bruker AM400 spectrometer. For both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, the solvent used was deuteriochloroform, and with any solvent the internal reference was tetramethylsilane at $\delta 0.00$, unless otherwise indicated. J-Values are given in Hz. Mass spectra were recorded on VG Micromass 70E and AEI MS902 spectrometers, or (for accurate FAB and CI spectra) at the SERC mass spectral unit in Swansea

Column chromatography was performed using Sorbsil C60 'Flash' silica gel (May and Baker) unless otherwise indicated. Also used was Fluka Kieselgel HF254 silica [for preparative TLC (PLC)] and Brockmann Grade I neutral alumina (BDH).

Light petroleum ($40-60^{\circ} \mathrm{C}$), pentane, dichloromethane, ethyl acetate and toluene were distilled before use.
HPLC was performed on a Waters 440 machine using (i) a Waters μ-Porasil $7.8 \times 300 \mathrm{~mm} \mathrm{~S}$ - 15 semi-preparative column, or (ii) a Waters Porasil $19 \times 300 \mathrm{~mm}$ S-15 preparative column, using distilled solvents.

For reactions, solvents were dried and/or distilled before use where necessary. Tetrahydrofuran (THF) was freshly distilled from sodium-benzophenone. Benzene and diethyl ether were dried over sodium wire. Actonitrile was distilled from phosphoric oxide onto $3 \AA$ molecular sieves and potassium carbonate. Methanol was distilled from magnesium and iodine onto $3 \AA$ sieves. Dichloromethane and chloroform were distilled onto $3 \AA$ sieves.

Pyridine and amines were distilled from calcium hydride onto potassium hydroxide pellets. Dimethyl sulfoxide (DMSO), triethylene glycol, propane-1,3-diol and butane-1,4-diol were distilled from calcium hydride onto $3 \AA$ or $4 \AA$ sieves. Dimethylformamide (DMF) was stirred over calcium hydride overnight, filtered, and distilled onto $3 \AA$ sieves.

Photolysis reactions used a Philips ML'U' 300 W mercury discharge lamp; the strongest UV frequencies are 365.5, 313.0, $302.5,289.4$ and 280.4 nm .

4-(Tetrahydropyran-2-yloxy)butan-1-ol 3a. ${ }^{18}$-To a rapidly stirred solution of butane-1,4-diol $(477.8 \mathrm{~g}, 5.30 \mathrm{~mol}, 10.6 \mathrm{~mol}$ equiv.) and pyridinium toluene-p-sulfonate (PPTS) ($12.57 \mathrm{~g}, 50$ $\mathrm{mmol}, 0.1 \mathrm{~mol}$ equiv.) in dry dichloromethane ($900 \mathrm{~cm}^{3}$) and dry THF ($350 \mathrm{~cm}^{3}$) under nitrogen was added a solution of 2,3-dihydro- 4 H -pyran ($42.06 \mathrm{~g}, 500 \mathrm{mmol}, 45.6 \mathrm{~cm}^{3}$) in dichloromethane ($150 \mathrm{~cm}^{3}$) slowly (dropping funnel) over a period of 2 h . After being stirred for another 5 h , the solution was evaporated to dryness, the residue was taken up in diethyl ether ($1.2 \mathrm{dm}^{3}$) and extracted with saturated brine ($1.2 \mathrm{dm}^{3}$) and water ($400 \mathrm{~cm}^{3}$). The aqueous phases were back-extracted with diethyl ether ($2 \times 600 \mathrm{~cm}^{3}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and the residue was chromatographed using dichloromethane-ethyl acetate [4:1 and 2:1 $\left(R_{\mathrm{f}} 0.21\right)$] to give 4-(tetrahydropyran-2-yloxy)-butan-1-ol 3a as an oil ($42.50 \mathrm{~g}, 243.9 \mathrm{mmol}, 48.8 \%$), b.p. 115$120^{\circ} \mathrm{C}$ at $0.2-0.3 \mathrm{mmHg}$ (Found: $\mathrm{MH}^{+}, 175.1322$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{3}: m / z$ 175.1334); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3392$ and 1024; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.5-1.9\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.97(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.48\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ of R' OCH_{2} and 1 H of ROCH R_{2}), $3.68(2 \mathrm{H}, \mathrm{t}, J$ $\left.6.0, \mathrm{HOCH}_{2}\right), 3.83\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$, of R'OCH O_{2} and 1 H of ROCH_{2}) and $4.61(1 \mathrm{H}, \mathrm{t}, J 3.5, \mathrm{OCHO}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 18.95(\mathrm{t}), 24.97$ $(\mathrm{t}), 25.78(\mathrm{t}), 29.03(\mathrm{t}), 30.17(\mathrm{t}), 61.43(\mathrm{t}), 66.79(\mathrm{t})$ and $98.16(\mathrm{~d})$; m / z (FAB) $175\left(\mathrm{MH}^{+}, 36 \%\right), 173$ (9), 101 (47), 85 (100), 73 (86) and 55 (85).

4-(Tetrahydropyran-2-yloxy)butyl Toluene-p-sulfonate 3b.To an ice-cooled solution of 4-(tetrahydropyran-2- yloxy)butan1 -ol $3 \mathrm{a}\left(42.50 \mathrm{~g}, 243.9 \mathrm{mmol}\right.$) in chloroform ($200 \mathrm{~cm}^{3}$), freshly passed through a long alumina plug to remove all ethanol stabiliser, were added pyridine ($39.5 \mathrm{~cm}^{3}, 488 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv.), then tosyl chloride ($69.76 \mathrm{~g}, 366 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv.) in parts over a period of 10 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , diluted with dichloromethane ($200 \mathrm{~cm}^{3}$), and extracted with aq. copper sulfate (4%, then 20%) until no further darkening of the aqueous layer occurred. The combined aqueous layers were back-extracted with dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$) and the combined organic layers were extracted with water ($2 \times 100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. The green residue was chromatographed using light petroleum-dichloromethane [3:1,1:1 $\left(R_{\mathrm{f}} 0.07\right)$ and $\left.1: 2\right]$ to give 4-(tetrahydropyran-2-yloxy)butyl toluene-p-sulfonate $\mathbf{3 b}$ as an oil ($56.69 \mathrm{~g}, 172.6 \mathrm{mmol}, 70.8 \%$), $\nu_{\max }$ (film) $/ \mathrm{cm}^{-1} 1599,1496$, $1359,1189,815,665$ and $556 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.5-1.8(10 \mathrm{H}, \mathrm{m}$,
$\left.5 \times \mathrm{CH}_{2}\right), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.34(1 \mathrm{H}, \mathrm{dt}, J 9.7$ and 6.0 , $\left.\mathrm{ROCH}_{2}\right), 3.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{R}^{\prime} \mathrm{OCH}_{2}\right), 3.69(1 \mathrm{H}, \mathrm{dt}, J 9.7$ and 6.2 , $\left.\mathrm{ROCH}_{2}\right), 3.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{R}^{\prime} \mathrm{OCH}_{2}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4, \mathrm{TsOCH}_{2}\right)$, $4.52(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OCHO}), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$ and $7.79(2 \mathrm{H}$, $\mathrm{d}, J 8.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.61$ (t), $21.51(\mathrm{q}), 25.52(\mathrm{t})$, 25.73 (t , 26.11 (t$), 30.72$ (t$), 62.25(\mathrm{t}), 66.47$ (t$), 70.48(\mathrm{t}), 98.81$ (d), 127.85 (d), 129.86 (d), 133.49 (s) and 144.65 (s); m / z (EI) 216 (13%), 214 (11), 173 (72), 172 (56.0), 91 (100), 85 (8) and 71 (52).

But-3-enyl-4-(tetrahydropyran-2-yloxy)butyl Ether 4a.-To a solution of 4 -(tetrahydropyran-2-yloxy)butyl toluene- p sulfonate 3b ($16.42 \mathrm{~g}, 50 \mathrm{mmol}$), but-3-en-1-ol $(7.211 \mathrm{~g}, 100$ $\mathrm{mmol}, 2$ mol equiv.) and tetrabutylammonium hydrogen sulfate ($1.698 \mathrm{~g}, 5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in benzene ($35 \mathrm{~cm}^{3}$) was added aq. sodium hydroxide ($50 \% ; 100 \mathrm{~cm}^{3}$) and the mixture was mechanically stirred at $60^{\circ} \mathrm{C}$ for 19.5 h . The cooled mixture was diluted with diethyl ether ($200 \mathrm{~cm}^{3}$), the organic layer was extracted with water ($4 \times 100 \mathrm{~cm}^{3}$), and the combined aqueous layers were extracted with diethyl ether ($50 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and chromatographed using light petroleum-diethyl ether [20:1, 9:1 and 5:1 ($\left.R_{\mathrm{f}} 0.28\right)$] to give but-3-enyl 4-(tetrahydropyran-2yloxy)butyl ether 4 a as a liquid ($5.708 \mathrm{~g}, 25.0 \mathrm{mmol}, 50.0 \%$), b.p. $82{ }^{\circ} \mathrm{C}$ at 0.5 mmHg (Found: $\mathrm{MH}^{+}, 229.1804 . \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3}$ requires $m / z 229.1804)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3078,1642,991$ and 911; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.5-1.9\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 2.33(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CHCH}_{2}\right), 3.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.47\left(4 \mathrm{H}, \mathrm{t}, J 6.8,2 \times \mathrm{OCH}_{2}\right)$, $3.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.76\left(1 \mathrm{H}, \mathrm{dt}, J 9.5\right.$ and $\left.6.5, \mathrm{OCH}_{2}\right), 3.86(1$ H , ddd, $J 11.2,7.2$ and $3.8, \mathrm{OCH}_{2}$), 4.59 ($1 \mathrm{H}, \mathrm{t}, J 3.4, \mathrm{OCHO}$), $5.05\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right)$ and $5.83(1 \mathrm{H}$, ddt, $J 17.1,10.3$ and 6.8 , $=\mathrm{CH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.67(\mathrm{t}), 25.62(\mathrm{t}), 26.65(\mathrm{t}), 30.83(\mathrm{t})$, $34.29(\mathrm{t}), 62.19(\mathrm{t}), 67.34(\mathrm{t}), 70.21$ and $70.75(\mathrm{t}), 98.81(\mathrm{~d})$, $116.20(\mathrm{t})$ and $135.44(\mathrm{~d}) ; m / z(\mathrm{FAB}) 238\left(\mathrm{THP}^{+}+\right.$MNBA, $12 \%), 229\left(\mathrm{MH}^{+}, 22\right), 145$ (100), 127 (98), 101 (29), 85 (100), 73 (99) and 55 (89).

4-(But-3-enyloxy)butan-1-ol $\mathbf{4 b}$.-To a solution of but-3-enyl 4-(tetrahydropyran-2-yloxy)butyl ether $4 \mathrm{a}(10.95 \mathrm{~g}, 47.96$ mmol) in methanol ($250 \mathrm{~cm}^{3}$) was added Dowex 50W-X8(H) acidic resin beads (7.82 g), and the mixture was stirred at $60-$ $65^{\circ} \mathrm{C}$ for 3 h . The beads were filtered off and washed well with methanol, then the solution was evaporated to dryness and the residue was chromatographed using light petroleum-diethyl ether ($6: 1$ to $2: 3$) to give starting material $4 \mathrm{a}(0.6749 \mathrm{~g}, 2.96$ $\mathrm{mmol}, 5.3 \%$ recovery) and 4-(but-3-enyl)butan-1-ol $\mathbf{4 b}$ as a liquid ($6.95 \mathrm{~g}, 48.2 \mathrm{mmol}, 86.3 \%$) $\left[\left(R_{\mathrm{f}} 0.18\right) \mathrm{I}: 1\right.$ light petroleumdiethyl ether], b.p. $57^{\circ} \mathrm{C}$ at 0.01 mmHg (Found: $2 \mathrm{M}+\mathrm{H}^{+}$, 289.2379. $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4}$ requires $m / z 289.237$ 88); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3375,3078,1642$, 995 and $915 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.68(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right), 2.35\left(2 \mathrm{H}\right.$, tddd, $\left.J 6.8,1.4,1.4,1.4,=\mathrm{CHCH}_{2}\right), 2.57$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.48\left(2 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{OCH}_{2}\right), 3.50(2 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.\mathrm{OCH}_{2}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{HOCH}_{2}\right), 5.07\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right)$ and $5.82(1 \mathrm{H}$, ddt, $J 17.1,10.2$ and $6.8,=\mathrm{CH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 26.60$ (t), 29.96 (t), 34.24 (t), 62.25 (t), 70.32 (t), 70.91 (t$), 116.31$ (t$)$ and 135.22 (d); $m / z($ FAB $) 289\left(2 \mathrm{M}+\mathrm{H}^{+}, 38\right), 155(71), 136$ (75), 107 (76), 89 (100) and 55 (100).

4-(But-3-enyloxy)butanal 5.-To a solution of oxalyl dichloride ($6.34 \mathrm{~cm}^{3}, 72.7 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) in dry dichloromethane ($150 \mathrm{~cm}^{3}$) under nitrogen and cooled to $\sim-65^{\circ} \mathrm{C}$ was added a solution of dry DMSO $\left(10.32 \mathrm{~cm}^{3}, 145.4\right.$ $\mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv.) in dichloromethane ($30 \mathrm{~cm}^{3}$) over 9 min (dropping funnel). The solution was stirred for 8 min , then a solution of 4-(but-3-enyloxy)butan-1-ol $4 \mathrm{~b}(9.53 \mathrm{~g}, 66.1 \mathrm{mmol})$ in dichloromethane $\left(65 \mathrm{~cm}^{3}\right)$ was added during 12 min (dropping funnel) and the solution was stirred for 26 min . Triethylamine ($46 \mathrm{~cm}^{3}$, $331 \mathrm{mmol}, 5 \mathrm{~mol}$ equiv.) was added (syringe), the white suspension was stirred for 5 min , then was
allowed to warm to room temperature. The mixture was poured onto dichloromethane ($200 \mathrm{~cm}^{3}$) and extracted with water (350 cm^{3}) and hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 250+100 \mathrm{~cm}^{3}$). The combined aqueous extracts were back-extracted with dichloromethane ($100 \mathrm{~cm}^{3}$) and the combined organic layers were extracted with water ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and chromatographed using light petroleum-diethyl ether [12:1 and 9:1 $\left(R_{\mathrm{f}} 0.15\right)$] to give 4-(but-3-enyloxy)butanal 5 as a liquid ($7.60 \mathrm{~g}, 53.5 \mathrm{mmol}, 80.9 \%$), b.p. $110^{\circ} \mathrm{C}$ at 143 mmHg (Found: MH^{+}, 143.1072. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}$ requires m / z 143.1072); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3077,2723,1725,1641,995$ and $916 ;$ $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.91\left(2 \mathrm{H}, \mathrm{tt}, J 6.6\right.$ and $\left.6.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.31$ (2 H , tddd, $J 6.7,1.4,1.4$ and 1.4, $=\mathrm{CHCH}_{2}$), 2.53 [2 H, td, $J 7.1$ and $\left.1.6, \mathrm{HC}(\mathrm{O}) \mathrm{CH}_{2}\right], 3.46\left(4 \mathrm{H}, \mathrm{t}, J 6.4,2 \times \mathrm{OCH}_{2}\right), 5.05(2 \mathrm{H}$, $\left.\mathrm{m},=\mathrm{CH}_{2}\right), 5.81(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.3$ and $6.7,=\mathrm{CH})$ and $9.78(1$ $\mathrm{H}, \mathrm{t}, J 1.6, \mathrm{CHO}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 22.70(\mathrm{t}), 34.18(\mathrm{t}), 40.96(\mathrm{t})$, $69.69(\mathrm{t}), 70.26$ (t), 116.20 (t), 135.33 (d) and $201.85(\mathrm{~d}) ; m / z$ (FAB) 278 (100), 206 (68), $143\left(\mathrm{MH}^{+}, 100\right), 127$ (100) and 101 (51).

1-Allyltetrahydrothiophenium Bromide $6 .{ }^{9}$-To a solution of tetrahydrothiophene ($26.46 \mathrm{~cm}^{3}, 0.30 \mathrm{~mol}$) in dry methanol (100 cm^{3}) was added allyl bromide ($31.2 \mathrm{~cm}^{3}, 0.36 \mathrm{~mol}, 1.2 \mathrm{~mol}$ equiv.; syringe) and the solution was stirred under nitrogen for 22 h at $25^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure, and the solid residue was washed with light petroleum (2×100 cm^{3}), then was evacuated overnight (oil-pump) to give 1 allyltetrahydrothiophenium bromide 6 as light beige, deliquescent crystals ($61.83 \mathrm{~g}, 0.296 \mathrm{~mol}, 98.5 \%$), m.p. $53-56^{\circ} \mathrm{C}$ (sealed tube) [Found: M^{+}(cation only), 129.0738. Calc. for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~S}^{+}$: m / z 129.0738]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3436,3079,1635,1435$ and $953 ;$ $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.44\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right), 3.62(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and}$ $5-\mathrm{H}), 3.96(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 4.48\left(2 \mathrm{H}, \mathrm{d}, J 7.3,=\mathrm{CHCH}_{2}\right)$, $5.60\left(1 \mathrm{H}, \mathrm{d}, J 10.0,=\mathrm{CH}_{2}\right), 5.71\left(1 \mathrm{H}, \mathrm{dd}, J 16.9\right.$ and $\left.0.9,=\mathrm{CH}_{2}\right)$ and $5.93(1 \mathrm{H}$, ddt, $J 17.0,9.8$ and $7.3,=\mathrm{CH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz})$ $29.15(\mathrm{t}), 43.34(\mathrm{t}), 44.86(\mathrm{t}), 125.52(\mathrm{~d})$ and $127.15(\mathrm{t}) ; m / z(\mathrm{FAB})$ $339\left(2 \mathrm{M}^{+}+{ }^{81} \mathrm{Br}^{-}, 18.0 \%\right), 337\left(2 \mathrm{M}^{+}+{ }^{79} \mathrm{Br}^{-}, 17\right), 130$ $\left(\mathrm{MH}^{+}, 40\right), 129\left[\mathrm{M}^{+}\right.$(cation only), 100] and 87 (83).

But-3-enyl 4,5-Epoxyhept-6-enyl Ether 7. ${ }^{9}$-A rapidly mechanically stirred solution of 1 -allyltetrahydrothiophenium bromide $6(12.89 \mathrm{~g}, 61.6 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.), the aldehyde $5(7.30 \mathrm{~g}, 51.3 \mathrm{mmol})$ and benzyltriethylammonium chloride ($1.1694 \mathrm{~g}, 10 \mathrm{~mol} \%$) in dichloromethane ($100 \mathrm{~cm}^{3}$) was cooled to $-20^{\circ} \mathrm{C}$ and $\operatorname{cool}\left(5^{\circ} \mathrm{C}\right)$ aq. sodium hydroxide $\left(10 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $80 \mathrm{~cm}^{3}$) was added rapidly over a period of 2.5 min (dropping funnel). The vessel was warmed to $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min before being diluted with dichloromethane ($50 \mathrm{~cm}^{3}$) and water ($150 \mathrm{~cm}^{3}$) and the separated aqueous layer was extracted with dichloromethane $\left(2 \times 75 \mathrm{~cm}^{3}\right)$. The combined organic layers were extracted with water (2×150 cm^{3}), dried (MgSO_{4}), evaporated to dryness, and the residue was chromatographed using light petroleum-diethyl ether (13:1) to give but-3-enyl-4,5-epoxyhept-6-enyl ether 7 as a liquid ($7.70 \mathrm{~g}, 42.3 \mathrm{mmol}, 82.3 \%$), present as the trans and cis epoxide diastereoisomers ($58: 42 \%$). Partial separation by chromatography yielded a little of each of the two pure diastereoisomers.

But-3-enyl trans-4,5-epoxyhept-6-enylether (7trans) as a liquid ($0.81 \mathrm{~g}, 4.44 \mathrm{mmol}, 8.7 \%$) [($R_{\mathrm{f}} 0.59$) $4: 1$ light petroleum-diethyl ether], b.p. $100^{\circ} \mathrm{C}$ at 0.5 mmHg (Found: C, 72.7; H, 10.3. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $72.49 ; \mathrm{H}, 9.95 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3079$, 1642, 987 and $917 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.7\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.33$ ($2 \mathrm{H}, \mathrm{dttd}, J 6.7,6.7,1.3,1.3$ and 1.3 , $=\mathrm{CHCH}_{2}$), $2.86[1 \mathrm{H}, \mathrm{td}$, $J 5.4$ and $\left.2.2, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})\right], 3.10[1 \mathrm{H}$, dd, $J 7.2$ and 2.2 , $=\mathrm{CHCH}(\mathrm{O})], 3.47\left(4 \mathrm{H}, \mathrm{t}, J 6.8,2 \times \mathrm{OCH}_{2}\right), 5.06(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CH}_{2}\right), 5.26\left(1 \mathrm{H}, \mathrm{dd}, J 9.9\right.$ and $\left.2.0,=\mathrm{CH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 2.1, $\left.=\mathrm{CH}_{2}\right), 5.58(1 \mathrm{H}$, ddd, $J 17.2,9.9$ and $7.3,=\mathrm{CH})$ and
$5.82(1 \mathrm{H}$, ddt, J 17.2, 10.2 and $6.7,=\mathrm{CH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 26.11$ (t), 28.88 (t), 34.24 (t), 58.29 (d), 59.82 (d), 70.10 (t), 116.04 (t$)$, 118.21 (t), 135.38 (d) and 136.19 (d); m / z (FAB) $183\left(\mathrm{MH}^{+}\right.$, 7.4%), 111 (32), 69 (50) and 55 (100); and but-3-enyl cis-4,5-epoxyhept-6-enyl ether (7 cis) as a liquid $(0.6720 \mathrm{~g}, 3.69 \mathrm{mmol}$, $7.2 \%)\left[\left(R_{\mathrm{f}} 0.54\right) 4: 1\right.$ light petroleum-diethyl ether], b.p. $100^{\circ} \mathrm{C}$ at 0.4 mmHg (Found: $\mathrm{MH}^{+}, 183.139 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}$ requires m / z $183.13850) ; v_{\max }(f i l m) / \mathrm{cm}^{-1} 3078,1640,987$ and $922 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}) 1.7\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.33(2 \mathrm{H}$, dtdd, $J 6.8,6.8,1.3$, and $\left.1.3,=\mathrm{CHCH}_{2}\right), 3.12\left[1 \mathrm{H}, \mathrm{td}, J 6.1\right.$ and $\left.4.4, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})\right]$, 3.41 [$1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 4.3, $=\mathrm{CHCH}(\mathrm{O})$], $3.47(4 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.2 \times \mathrm{CH}_{2} \mathrm{O}\right), 5.05\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.36(1 \mathrm{H}, \mathrm{ddd}, J 10.6,1.8$ and $\left.0.6,=\mathrm{CH}_{2}\right), 5.48\left(1 \mathrm{H}, \mathrm{ddd}, J 17.2,1.8\right.$ and $\left.0.6,=\mathrm{CH}_{2}\right), 5.72$ $(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.3$ and $7.1,=\mathrm{CH})$ and $5.82(1 \mathrm{H}, \mathrm{ddt}, J 17.1$, 10.3 and $6.7,=\mathrm{CH}) ; \delta_{\mathrm{c}}(22.5 \mathrm{MHz}) 24.70$ and $26.65(\mathrm{t}), 34.35$ (t), 56.83 (d), 58.18 (d), 70.16 (t), 116.04 (t), 119.78 (t), 133.05 (d) and 135.44 (d): $m / z(\mathrm{FAB}) 183\left(\mathrm{MH}^{+}, 47 \%\right), 111\left(\mathrm{M}^{+}-\right.$but-3-enyloxy, 86), 69 (69) and 55 (91).

Photolytic Addition of Diphenyl Disulfide onto But-3-enyl 4,5-epoxyhept-6-enyl Ether 7 in Benzene.-To a solution of but-3enyl 4,5 -epoxyhept-6-enyl ether $7(0.911 \mathrm{~g}, 5 \mathrm{mmol})$, present as the trans and cis epoxide diastereoisomers ($59: 41 \%$), in dry deoxygenated benzene ($250 \mathrm{~cm}^{3}$) under nitrogen and irradiated with UV light from a sunlamp was added a solution of diphenyl disulfide ($1.201 \mathrm{~g}, 5.5 \mathrm{mmol}$, 1.1 mol equiv.) in benzene ($20 \mathrm{~cm}^{3}$) during 1.5 h (syringe pump), during which the solution attained reflux temperature. After another 30 min the solution was evaporated to dryness and repeatedly chromatographed using light petroleum-diethyl ether ($4: 1$ to $1: 1$), then toluene-diethyl ether ($20: 1$ and $9: 1$) to give (i) a crude fraction (1) containing 1-(3-methyltetrahydrofuran-2-yl)-5-(phenylthio)hexan-3-one $10(0.185 \mathrm{~g})$ [($\left.R_{\mathrm{f}} 0.65-0.59\right), 1: 1$ light petroleum-diethyl ether; ($R_{\mathrm{f}} 0.72-0.58$), 4:1 toluene-diethyl ether]; (ii) a crude fraction (2) containing 7 -(but-3-enyloxy)-1,3-bis(phenylthio)hept-1-en-4-ol 12 and $13(0.089 \mathrm{~g})$ [$R_{\mathrm{f}} 0.59-0.52$), $1: 1$ light petroleumdiethyl ether; ($R_{\mathrm{f}} 0.60-0.53$), 4:1 toluene-diethyl ether]; (iii) a crude fraction (3) containing mainly 3 -(but-3-enyloxy)-2-vinylcyclopentanol 11 [$\left(R_{\mathrm{f}} 0.48-0.38\right), 1: 1$ light petroleum-diethyl ether; ($R_{\mathrm{f}} 0.37-0.25$), 4:1 toluene-diethyl ether]; and (iv) the major diastereoisomer of 3-(but-3-enyloxy)-2-vinylcyclopentanol 11 as a slightly coloured oil $(0.104 \mathrm{~g}, 0.573 \mathrm{mmol}, 11.5 \%)\left[\left(R_{\mathrm{f}}\right.\right.$ $0.34)$, 1:1 light petroleum-diethyl ether; $\left(R_{\mathrm{f}} 0.21\right), 4: 1$ toluenediethyl ether] (Found: C, $72.15 ; \mathrm{H}, 10.0 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $72.49 ; \mathrm{H}, 9.95 \%$); $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3397,3079,1641,1087,993$ and $914 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.75-2.05\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}_{2}\right), 2.24$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.31\left(2 \mathrm{H}, \mathrm{qt}, J 6.7\right.$ and $\left.1.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.61$ ($1 \mathrm{H}, \mathrm{dt}, J 7.7$ and $4.3,2-\mathrm{H}), 3.48\left(2 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{OCH}_{2}\right), 3.74(1 \mathrm{H}$, $\mathrm{q}, J 4.4,3-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{dt}, J 5.7$ and $4.6,1-\mathrm{H}), 5.07(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CH}_{2}\right), 5.12\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.65(1 \mathrm{H}, \mathrm{ddd}, J 17.3,10.2$ and 7.7 , $=\mathrm{CH})$ and $5.80(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.2$ and $6.8,=\mathrm{CH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 28.78$ and 32.09 (t), 34.44 (t), 57.91 (d), 68.46 (t), 77.07 (d), 84.62 (d), 116.42 (t), 116.61 (t), 135.23 (d) and 137.54 (d); m / z (EI) $151(11 \%), 110\left(\mathrm{M}^{+}\right.$- but-3-enyloxy, 32.4) and 55 $\left(\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}, 100\right)$.
Fraction 1 was purified on a preparative HPLC column (flow rate $8 \mathrm{~cm}^{3} \mathrm{~min}^{-1} ; 45 \mathrm{mg}$ injections) using light petroleum-ethyl acetate (8:1) to give the minor diastereoisomer of 1-(3^{\prime} -methyltetrahydrofuran-2-yl)-5-(phenylthio)hexan-3-one 10 as a brown oil ($13.3 \mathrm{mg}, 0.0454 \mathrm{mmol}, 0.91 \%$) $\left(t_{\mathrm{R}} 27.5 \mathrm{~min}\right.$) (Found: M^{+}, 292.1483. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ requires M, 292.1497); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3058,1714,1584,1477,1455,1439,744$ and $693 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.02\left(3 \mathrm{H}, \mathrm{d}, J 6.6,3^{\prime}-\mathrm{Me}\right), 1.28(3 \mathrm{H}$, dd, $J 6.7$ and 1.3 , Me), $1.52\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 1.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.78(1 \mathrm{H}$, septet, $J 7.3$, $\left.3^{\prime}-\mathrm{H}\right), 1.93(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.07\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.46(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$, of $2-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.25\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{SPh}), 3.77$ $\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$

MHz) 17.12 (q), 21.08 (q), 27.85 (t), 34.74 (t), 38.36 (d), 39.12 (d), 40.30 (t), 49.66 (t), 66.79 (t), 84.95 (d), 127.25 (d), 129.01 (d), 132.40 (d), 134.46 (s) and 208.68 (s); m / z (EI) 292 ($\mathrm{M}^{+}, 16 \%$), 194 (72), 179 (3), 151 (19), 141 (59), 137 (100) and 85 (76); and the major diastereoisomer of compound 10 as an oil (60.7 mg , $0.208 \mathrm{mmol}, 4.15 \%$) ($t_{\mathrm{R}} 30 \mathrm{~min}$) (Found: $\mathrm{M}^{+}, 292.15057$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3058,1714,1584,1479,1456,1439,749$ and 694; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{d}, J 7.0,3^{\prime}-\mathrm{Me}\right), 1.28(3 \mathrm{H}, \mathrm{dd}, J 6.7$ and 2.0 , Me), 1.54 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $1.64\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 2.04(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 2.23\left(1 \mathrm{H}\right.$, septet, $\left.J 6.7,3^{\prime}-\mathrm{H}\right), 2.43(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.56(1$ $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dt}, J 16.9$ and $4.8,4$ H), 3.68 ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhSCH}, 2^{\prime}-$ and $5^{\prime}-\mathrm{H}$), 3.83 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), $7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 14.19(\mathrm{q})$, 21.13 (q), 24.60 (t), 33.80 (t), 35.81 (d), 38.46 (d), 40.63 (t), 49.79 (t), 66.15 (t), 80.72 (d), 127.20 (d), 128.94 (d), 132.40 (d), 134.52 (s) and 208.52 (s); $m / z(E I) 292\left(\mathrm{M}^{+}, 10 \%\right.$), 194 (67), 179 (2), 151 (4), 141 (32), 137 (100) and 85 (61).

Fraction 2 was purified on a semi-preparative HPLC column (flow rate $3 \mathrm{~cm}^{3} \mathrm{~min}^{-1} ; 10 \mathrm{mg}$ injections) using light petroleumethyl acetate (8:1) to give four isomers of 7-(but-3-enyloxy)-1,3-bis(phenylthio)hept-1-en-4-ol $12 / 13(61.6 \mathrm{mg}, 0.154 \mathrm{mmol}$, 3.08%). Two of these isomers were isolated pure: one diastereoisomer of (Z)-alcohol 12 as an oil $(5.9 \mathrm{mg}, 0.0147$ $\mathrm{mmol}, 0.29 \%$) ($\left.t_{\mathrm{R}} 14.5 \mathrm{~min}\right), \lambda_{\max }(\mathrm{MeCN}) / \mathrm{nm} 250.4$ ($\varepsilon 8500$) and 264.1 (8500); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3424,3074,3059,1641,1583$, $1479,1440,739$ and $691 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.60(2 \mathrm{H}, \mathrm{m}), 1.79$ ($2 \mathrm{H}, \mathrm{m}$), $2.34(2 \mathrm{H}, \mathrm{qt}, J 6.8$ and 1.3$), 3.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.47$ $\left(2 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{OCH}_{2}\right), 3.48\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{OCH}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{td}$, $J 8$ and $2.3, \mathrm{CHOH}$), $4.24(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 7.2 , PhSCH), 5.07 $\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $9.4, \mathrm{CH}=\mathrm{CH}), 5.81(1 \mathrm{H}$, ddt, $J 17.1,10.3$ and 6.7, $\mathrm{C} H=\mathrm{CH}_{2}$), $6.28(1 \mathrm{H}, \mathrm{d}, J 9.3,=\mathrm{C} H S P h)$, $7.23(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 26.38(\mathrm{t})$, 32.01 (t), 34.19 (t), 54.97 (d), 70.32 (t), 70.93 (t), 72.90 (d), 116.56 (t), 126.61 (d), 126.74 (d), 127.54 (d), 128.91 (d), 129.05 (d) and 129.37 (d), 130.30 (d), 2×133.32 (s and d), 135.20 (d) and 135.63 (s); m / z (FAB) 401 ($\mathrm{MH}^{+}, 1 \%$), 400 ($\mathrm{M}^{+}, 2$), 291 (4), 257 (4), 219 (26), 181 (12) and 55 (100); and one diastereoisomer of (E)-alcohol 13 as an oil ($4.4 \mathrm{mg}, 0.0110 \mathrm{mmol}, 0.22 \%$) $\left(t_{\mathrm{R}} 18.3\right.$ $\mathrm{min}), \lambda_{\max }(\mathrm{MeCN}) / \mathrm{nm} 250.7$ (ε 8600) and 264sh (7500); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3426,3074,3057,1641,1583,1479,1439,1109$, 741 and $691 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.55-1.84\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ and $\mathrm{OH}), 2.34\left(2 \mathrm{H}, \mathrm{qt}, J 6.8\right.$ and $\left.1.3, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.48(2 \mathrm{H}, \mathrm{t}, J 5.4$, $\left.\mathrm{OCH}_{2}\right), 3.49\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8, \mathrm{OCH}_{2}\right), 3.71(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and $\mathrm{C} H \mathrm{SPh}), 5.07\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.79(1 \mathrm{H}, \mathrm{dd}, J 14.9$ and 9.3 , $\mathrm{CH}=\mathrm{CH}), 5.81\left(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.1,10.3\right.$ and $\left.6.7, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.02$ $(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{PhSCH}=), 7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.25(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 26.27$ (t), 32.19 (t), 34.18 (t), 60.32 (d), 70.37 (t), 70.93 (t), 72.53 (d), 116.65 (t), 125.44 (d), 126.65 (d), 127.88 (d), 129.04 (d), 129.07 (d), 129.37 (d), 130.90 (d), 133.42 (s), 134.13 (d), 135.13 (d) and 135.23 (s); m / z (FAB) $401\left(\mathrm{MH}^{+}, 1.1 \%\right), 400\left(\mathrm{M}^{+}, 1\right), 291(9), 257(6), 219(30), 181$ (25) and 55 (100).

Fraction 3 was purified on a semi-preparative HPLC column (flow rate $\mathrm{cm}^{3} \mathrm{~min}^{-1}, 10 \mathrm{mg}$ injections) using light petroleumethyl acetate ($6: 1 ; t_{\mathrm{R}} 13.8 \mathrm{~min}$), then on a preparative HPLC column (flow rate $8 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) using dichloromethane-ethyl acetate ($12: 1 ; t_{\mathrm{R}} 26.5 \mathrm{~min}$), to give the minor diastereoisomer of 3-(but-3-enyloxy)-2-vinylcyclopentanol 11 as an oil (37.2 mg , $0.204 \mathrm{mmol}, 4.1 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3372,3076,1641,1086$, 996 and $913 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.52(1 \mathrm{H}, \mathrm{ddt}, J 12.8,10.3$ and 6.5 , $5-\mathrm{H}), 1.71(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.74(1 \mathrm{H}$, dddd, $J 13.8,9.0,6.2$ and 2.9 , 4-H), $2.00(1 \mathrm{H}$, ddt, $J 13.9,10.3$ and $5.6,4-\mathrm{H}), 2.17(1 \mathrm{H}$, dddd, $J 12.8,9.0,7.4$ and $5.5,5-\mathrm{H}), 2.28(2 \mathrm{H}, \mathrm{qt}, J 6.8$ and 1.4 , $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.32(1 \mathrm{H}, \mathrm{td}, J 8.5$ and $5.4,2-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{dt}, J 9.2$ and 6.8, ABX_{2} system, 1 H of OCH_{2}), $3.47(1 \mathrm{H}, \mathrm{dt}, J 9.2$ and 6.8, ABX ${ }_{2}$ system, 1 H of OCH_{2}), $3.87(1 \mathrm{H}, \mathrm{td}, J 5.5$ and 2.9 , $3-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{q}, J 7.3,1-\mathrm{H}), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.18(2 \mathrm{H}$, $\left.\mathrm{m},=\mathrm{CH}_{2}\right), 5.81\left(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.2\right.$ and $\left.6.7, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and
5.98 (1 H , ddd, J 17.2, 10.4 and $9.0, \mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ 28.90 (t), 31.24 (t), 34.44 (t), 58.01 (d), 68.86 (t), 76.43 (d), 82.08 (d), 116.23 (t) and 117.15 (t), 135.53 (d) and 136.45 (d).

Pent-4-enal. ${ }^{19,20}$-To a solution of dry pent-4-en-1-ol (3.015 g, 35 mmol), Kieselguhr ($10 \mathrm{~g}, 0.17 \mathrm{~mol}, 5 \mathrm{~mol}$ equiv.), Florosil ($1 \mathrm{~g}, 17 \mathrm{mmol}, 0.5 \mathrm{~mol}$ equiv.), anhydrous sodium acetate (15 g , $0.18 \mathrm{~mol}, 5 \mathrm{~mol}$ equiv.) and crushed activated $3 \AA$ molecular sieves in dry dichloromethane $\left(500 \mathrm{~cm}^{3}\right)$ was added pyridinium chlorochromate (PCC) ($37.7 \mathrm{~g}, 0.175 \mathrm{~mol}, 5 \mathrm{~mol}$ equiv.) and the brown mixture was stirred for 2 h . Diethyl ether ($500 \mathrm{~cm}^{3}$) was added and the resulting black solid was filtered off through a $6^{\prime \prime}$ column of Florosil. The filtrate was extracted with sodium hydroxide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \times 100 \mathrm{~cm}^{3}$) to remove a carboxylic acid by-product and the aqueous layers were back-extracted with diether ether $\left(100 \mathrm{~cm}^{3}\right)$. The combined organic layers were extracted with aq. copper sulfate (20%) until no further darkening occurred, then with water ($100 \mathrm{~cm}^{3}$), and were dried (MgSO_{4}) and concentrated to $130 \mathrm{~cm}^{3}$ by careful, slow distillation through a 1^{\prime} Vigreux column, and used in this form in the synthesis of octa-1,3,7-triene 3,4 -oxide 14 . Further distillation led to considerable loss of product into the distillate. Chromatography of the residue using dichloromethane (R_{f} 0.56), however, yielded pent-4-enal as a liquid, b.p. $10{ }^{\circ} \mathrm{C}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3081,2726,1727,1644$ and $919 ; \delta_{\mathrm{H}}(80 \mathrm{MHz}) 2.5$ ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}_{2}$), $5.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $5.84(1 \mathrm{H}, \mathrm{ddt}, J 17.2,9.8$ and $6.1,4-\mathrm{H})$ and $9.75(1 \mathrm{H}, \mathrm{t}, J 1.4$, $1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.07(\mathrm{t}), 42.67(\mathrm{t}), 115.40(\mathrm{t})$, 136.42 (d) and 201.38 (d); m / z (EI) $85\left(\mathrm{MH}^{+}, 66 \%\right.$), 71 (100), 57 (100) and $55\left(\mathrm{M}^{+}-\mathrm{CHO}, 68.8\right)$.

Octa-1,3,7-triene 3,4-Oxide $14 .{ }^{9}$-To a solution of pent-4enal (32 mmol) in dichloromethane ($130 \mathrm{~cm}^{3}$), freshly prepared in the previous experiment, was added 1 -allyltetrahydrothiophenium bromide $6(8 \mathrm{~g}, 38 \mathrm{mmol})$ and benzyltriethylammonium chloride ($0.85 \mathrm{~g}, 3.7 \mathrm{mmol}$), and the solution was cooled to $-25^{\circ} \mathrm{C}$. $\mathrm{Cool}\left(5^{\circ} \mathrm{C}\right)$ aq. sodium hydroxide (10 mol $\mathrm{dm}^{-3} ; 40 \mathrm{~cm}^{3}$) was added during 3 min with rapid magnetic stirring of the mixture. After 20 min at $-25^{\circ} \mathrm{C}$ and 1.5 h at $0^{\circ} \mathrm{C}$ the mixture was treated with water $\left(700 \mathrm{~cm}^{3}\right)$ and the aqueous layer was back-extracted with diethyl ether ($2 \times 150 \mathrm{~cm}^{3}$). The combined organic layers were extracted with water (2×100 cm^{3}), dried (MgSO_{4}), carefully evaporated to dryness, and the residue was chromatographed with diethyl ether in pentane [1.5% and 2% ($R_{\mathrm{f}} 0.27$; iodine best)] to give octa-1,3,7-triene 3,4 -oxide 14 as a liquid $(1.2981 \mathrm{~g}, 10.47 \mathrm{mmol}, 29.9 \%$ over 2 steps from pent-4-en-1-ol) as trans and cis epoxide diastereoisomers ($76: 24 \%$), b.p. $125^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3081,1642,988$, 917 and $875 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.67\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.28(2 \mathrm{H}, \mathrm{m}, 6-$ H_{2}), $2.87(1 \mathrm{H}, \mathrm{td}, J 5.7$ and 2.2, 4-H trans $), 3.12(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ cis), 3.12 (1 H , dd, $J 7.3$ and $2.1,3-\mathrm{H}$ trans), 3.42 (1 H , dd, $J 7.2$ and 4.3, 3-H cis), $5.00(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10.1,8-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dq}, J$ 17.2 and $1.7,8-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $2.0,1-\mathrm{H}$ trans $), 5.36$ (1 H , ddd, $J 10.3,1.7$ and $0.6,1-\mathrm{H}$ cis), $5.45(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 2.2, 1-H trans $), 5.48(1 \mathrm{H}, \mathrm{ddd}, J 17.1,1.7$ and $0.6,1-\mathrm{H}$ cis $), 5.58$ (1 H , ddd, $J 17.2,9.9$ and $7.3,2-\mathrm{H}$ trans), 5.73 (1 H , ddd, $J 17.2$, 10.2 and $7.1,2-\mathrm{H}$ cis) and $5.84(1 \mathrm{H}, \mathrm{ddt}, J 17.0,10.2$ and 6.7 , $7-\mathrm{H}) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.41$ (t), 30.22 (t$), 30.66(\mathrm{t}), 31.58$ (t), 57.36 and 58.39 (d), 58.88 (d) and 60.07 (d), 115.44 (t), 118.96 (t), 120.48 (t), 132.83 (d), 136.03 (d) and 137.76 (d); m / z (EI) $83\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5}, 55 \%\right.$), 67 (94), 57 (76), 55 (100) and 41 (67).

Radical Addition of Thiophenol to Octa-1,3,7-triene 3,4-Oxide 14 with AIBN in Refluxing THF.-A solution of octa-1,3,7triene 3,4 -oxide $14(0.20 \mathrm{~g}, 1.6 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ under nitrogen was brought to reflux and solutions of thiophenol ($0.26 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv.) in THF ($2 \mathrm{~cm}^{3}$) and

AIBN ($0.22 \mathrm{~g}, 0.14 \mathrm{mmol}, 8 \mathrm{~mol} \%$) in THF ($2.5 \mathrm{~cm}^{3}$) were added separately (syringe) during 3 h . After reflux for 18 h , the solution was evaporated to dryness and the residue was chromatographed using light petroleum, light petroleum-dichloromethane ($10: 1$ to $1: 1$), and dichloromethane, to give starting material $14\left(47.3 \mathrm{mg}, 0.38 \mathrm{mmol}, 24 \%\right.$ recovery) ($R_{\mathrm{f}} 0.56$; dichloromethane); and (E)-2-methyl-5-[3-(phenylthio)prop-1enyl]tetrahydrofuran 15, purified by PLC using 3:1 light petroleum-diethyl ether eluent as a pale yellow oil $(0.124 \mathrm{~g}$, $0.529 \mathrm{mmol}, 33 \%$) ($R_{\mathrm{f}} 0.36$; dichloromethane), present as cis and trans ring diastereoisomers (1:1) (Found: $\mathrm{M}^{+}, 234.1072$. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}$ requires $M, 234.1078$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3060,1585$, $1480,970,740$ and $690 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.18(3 \mathrm{H}, \mathrm{d}, J 5.9,2-\mathrm{Me}$ of one isomer), $1.21(3 \mathrm{H}, \mathrm{d}, J 5.8,2-\mathrm{Me}$ of other isomer), 1.45 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $1.95\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{PhSCH} 2$), $3.95(1 \mathrm{H}, \mathrm{d}$ of quintets, $J 7.3$ and $6.1,2-\mathrm{H}$ of one isomer), 4.06 ($1 \mathrm{H}, \mathrm{d}$ of quintets, $J 7.6$ and $6.0,2-\mathrm{H}$ of other isomer), 4.21 and $4.37(1 \mathrm{H}, \mathrm{q}, J 6.5,5-\mathrm{H}), 5.51$ and $5.54(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and 6.3 , $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.70\left(1 \mathrm{H}, \mathrm{dt}, J 15.3\right.$ and $\left.6.9, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.72$ $\left(1 \mathrm{H}, \mathrm{dt}, J 15.1\right.$ and $\left.6.1, \mathrm{CH}=\mathrm{CHCH}_{2}\right)$ and $7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.29(\mathrm{q}), 21.31(\mathrm{q}), 32.11(\mathrm{t}), 32.80(\mathrm{t}), 32.89(\mathrm{t})$, 33.75 (t), 36.08 (t), 36.11 (t), 75.00 (d), 75.62 (d), 78.38 (d), 79.06 (d), 125.83 (d), 126.23 (d), 126.28 (d), 128.70 (d), 130.17 (d), 130.22 (d), 134.94 (d), 135.02 (d) and 135.91 (s); m / z (EI) 234 ($\mathrm{M}^{+}, 8 \%$), 149 (3), 125 (58), 124 (29), 110 (50), 109 (26), 85 (22.4) and 41 (100); and (E)-1-(phenylthio)octa-2,7-dien-4-ol 16, purified by PLC ($2: 3$ light petroleum-diethyl ether) as a brown oil ($40.2 \mathrm{mg}, 0.172 \mathrm{mmol}, 11 \%$) ($R_{\mathrm{f}} 0.22$; dichloromethane) (Found: $\mathrm{M}^{+}, 234.1076 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}$ requires $M, 234.1078$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3380,3080,3010,1645,1590,1485,750$ and $700 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}), 1.52\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.00\left(2 \mathrm{H}, \mathrm{qt}, J 7.0\right.$ and $\left.1.2,6-\mathrm{H}_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{d}, J 6.8,1-\mathrm{H}_{2}\right), 4.05$ $(1 \mathrm{H}, \mathrm{q}, J 6.5,4-\mathrm{H}), 4.97\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 5.51(1 \mathrm{H}, \mathrm{ddt}, J 15.3,6.8$ and $0.9,3-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.9,2-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{ddt}, J$ $17.1,10.2$ and $6.6,7-\mathrm{H})$ and $7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$; CDCl_{3}) $29.45(\mathrm{t}), 35.96(\mathrm{t}), 36.03(\mathrm{t}), 71.74(\mathrm{~d}), 114.84(\mathrm{t})$, 126.38 (d), 126.47 (d), 128.79 (d), 130.40 (d), 135.42 (s), 136.12 (d) and 138.13 (d); m / z (EI) 234 ($\mathrm{M}^{+}, 3.7 \%$), 217 (6), 135 (18), 124 (4), 123 (61), 110 (100), 109 (18.0), 69 (32.8) and 55 (62.6).

3-(tert-Butyldiphenylsiloxy)propan-1-ol 17. ${ }^{21}$-To a solution of dry propane-1,3-diol ($144 \mathrm{~cm}^{3}, 2 \mathrm{~mol}, 11 \mathrm{~mol}$ equiv.) and imidazole ($24.77 \mathrm{~g}, 0.3638 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv.) in dry DMF (450 cm^{3}) under nitrogen was added tert-butylchlorodiphenylsilane ($50 \mathrm{~g}, 47.3 \mathrm{~cm}^{3}, 0.1819 \mathrm{~mol}$) dropwise over a period of 3 h (syringe pump). After the mixture had been stirred for 2 days, most of the solvent was removed $\left(50-60^{\circ} \mathrm{C} ; 1-2 \mathrm{mmHg}\right)$, the residual suspension was poured onto water ($250 \mathrm{~cm}^{3}$), and the precipitated product was taken up in diethyl ether $\left(250 \mathrm{~cm}^{3}\right)$. The separated aqueous layer was back-extracted with diethyl ether ($250 \mathrm{~cm}^{3}$). The combined organic layers were washed with water ($5 \times 100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and the residue was chromatographed using light petroleumdiethyl ether $\left[40: 1\right.$ and $3: 1\left(R_{\mathrm{f}} 0.21\right)$] to give 3 -(tert-butyldiphenylsiloxy)propan-1-ol 17 as needles ($50.03 \mathrm{~g}, 0.159$ $\mathrm{mol}, 87.5 \%$), m.p. $42-44^{\circ} \mathrm{C}$ (lit., ${ }^{21} 35-40^{\circ} \mathrm{C}$) (from pentane at $-20^{\circ} \mathrm{C}$) (Found: C, 72.6; H, 8.5. Calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C, $72.56 ; \mathrm{H}, 8.27 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3436,3071,3048,1589,1470$, $1428,1109,733$ and $702 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.81$ (2 H , quintet, $J 5.6,2-\mathrm{H}_{2}$), $2.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.85(4 \mathrm{H}, \mathrm{t}, J 5.6$, 1 -and $3-\mathrm{H}_{2}$), $7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}(22.5$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 19.17 (s), 26.97 (q), 34.94 (t), 60.56 (t), 62.29 (t), 127.74 (d), 129.74 (d), 133.64 (s) and 135.54 (d); m / z (FAB) 315 $\left(\mathrm{MH}^{+}, 17 \%\right), 257$ (16), 237 (13), 199 (81), 179 (64), 137 (71), 135 (100), 117 (82), 77 (19), 75 (59) and 57 (16).

[^0]oxalyl dichloride ($15.11 \mathrm{~cm}^{3}, 0.1733 \mathrm{~mol}, 1.1 \mathrm{~mol}$ equiv.) in dry dichloromethane ($200 \mathrm{~cm}^{3}$) under nitrogen, mechanically stirred and cooled to $-63^{\circ} \mathrm{C}$, was added dropwise (10 min , dropping funnel) a solution of dry DMSO ($24.6 \mathrm{~cm}^{3}, 0.3465$ $\mathrm{mol}, 2.2 \mathrm{~mol}$ equiv.) in dichloromethane ($50 \mathrm{~cm}^{3}$). Then a solution of 3-(tert-butyldiphenylsiloxy)propan-1-ol $17(49.53 \mathrm{~g}$, 0.1575 mol) in dichloromethane ($130 \mathrm{~cm}^{3}$) was added slowly (12 min , dropping funnel). After 1.25 h , dry diisopropylethylamine ($137.2 \mathrm{~cm}^{3}, 0.7875 \mathrm{~mol}, 5 \mathrm{~mol}$ equiv.) was added (syringe) and the clear mixture was stirred for 10 min at $-63^{\circ} \mathrm{C}$. After warming to room temperature, the mixture was poured onto water ($100 \mathrm{~cm}^{3}$), the aqueous layer was back-extracted with dichloromethane ($50 \mathrm{~cm}^{3}$), and the combined organic layers were extracted successively with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3}$; $400+100 \mathrm{~cm}^{3}$) and water ($100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. The residue was chromatographed using light petroleum-dichloromethane [(3:1 ($R_{\mathrm{f}} 0.22$) and 2:1], to give 3 -(tert-butyldiphenylsiloxy)propanal 18 as crystals (44.67 $\mathrm{g}, 0.143 \mathrm{~mol}, 90.8 \%$), m.p. $51-53^{\circ} \mathrm{C}$ (from hexane) (Found: C, $72.9 ; \mathrm{H}, 8.0$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 73.03 ; \mathrm{H}, 7.72 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3071,3050,2730,1729,1590,1473,1112$ and $704 ; \delta_{\mathrm{H}}(250 \mathrm{MHz})^{22} 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.61(2 \mathrm{H}, \mathrm{td}, J 6.0$ and $\left.2.3,2-\mathrm{H}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{t}, J 6.0,3-\mathrm{H}_{2}\right), 7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.66(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$ and $9.82(1 \mathrm{H}, \mathrm{t}, J 2.3,1-\mathrm{H}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.12(\mathrm{~s})$, $26.76(\mathrm{q}), 46.32(\mathrm{t}), 58.29(\mathrm{t}), 127.74$ and $129.75(\mathrm{~d}), 133.32(\mathrm{~s})$, 135.49 (d) and 201.10 (d); m / z (EI) 255 ($\mathrm{M}^{+}-\mathrm{Bu}^{t}, 100 \%$), 225 (70.0), 199 (33), 183 (50), 177 (33) and 117 (42).

6-(tert-Butyldiphenylsiloxy)-3,4-epoxyhex-1-ene 19. ${ }^{9}$--To a rapidly mechanically stirred solution of 3-(tert-butyldiphenylsiloxy)propanal 18 ($15.62 \mathrm{~g}, 50 \mathrm{mmol}$), 1-allyltetrahydrothiophenium bromide $6(12.55 \mathrm{~g}, 60 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.) and benzyltriethylammonium chloride ($1.14 \mathrm{~g}, 5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in dichloromethane ($150 \mathrm{~cm}^{3}$) cooled to $-20^{\circ} \mathrm{C}$ was added cool $\left(5^{\circ} \mathrm{C}\right)$ aq. sodium hydroxide ($10 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 150 \mathrm{~cm}^{3}$) via a dropping funnel over a period of 2 min . The mixture was then adjusted to $0^{\circ} \mathrm{C}$ and, after being stirred for another 10 min , was poured onto water ($400 \mathrm{~cm}^{3}$)-dichloromethane ($100 \mathrm{~cm}^{3}$) and the separated aqueous layer was extracted with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$). The combined organic layers were extracted with water $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and chromatographed using light petroleum-diethyl ether ($30: 1$ and $9: 1$), to give 6 -(tert-butyldiphenylsiloxy)-3,4-epoxyhex-1-ene 19 as an oil ($7.715 \mathrm{~g}, 21.9 \mathrm{mmol}, 43.8 \%$) [$\left(R_{\mathrm{f}}\right.$ 0.20), $30: 1$ light petroleum-diethyl ether], present as trans and cis epoxide diastereoisomers ($69: 31 \%$) (Found: C, 74.85 ; H, 8.3. Calc. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$: C, $74.95 ; \mathrm{H}, 8.01 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ 3071, 3050, 1961, 1891, 1829, 1643, 1590, 1568, 1487, 1473, 1111, $926,882,824,739$ and $702 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$, $1.82\left(2 \mathrm{H}, \mathrm{q}, J 6.1,5-\mathrm{H}_{2}\right), 3.03(1 \mathrm{H}, \mathrm{td}, J 5.7$ and $2.2,4-\mathrm{H}$ trans $)$, $3.18(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and $2.1,3-\mathrm{H}$ trans $), 3.30(1 \mathrm{H}, \mathrm{td}, J 6.1$ and 4.4, 4-H cis), $3.42(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and $4.2,3-\mathrm{H}$ cis), $3.80(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.J 6,6-\mathrm{H}_{2}\right), 5.30(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$, cis and trans $), 5.43(1 \mathrm{H}$, ddd, J 17.1, 1.8 and $0.7,1-\mathrm{H}$ cis), 5.46 ($1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $2.1,1-\mathrm{H}$ trans), $5.60(1 \mathrm{H}$, ddd, $J 17.2,9.8$ and 7.3, 2-H trans), $5.66(1 \mathrm{H}$, ddd, $J 17.1,10.2$ and $7.0,2-\mathrm{H}$ cis), $7.41(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.66 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.18$ (s$), 26.87$ (q), 30.99 (t), 35.21 (t), 56.23 (d), 56.83 (d), 58.13 (d), 58.67 (d), 60.73 (t), 61.27 (t), 118.80 (t), 120.10 (t), 127.64 (d), 129.64 (d), 132.56 (d), 133.65 (s), 135.49 (d) and 135.87 (d); m / z (FAB) 353 ($\mathbf{M H}^{+}, 3 \%$), 295 (51), 275 (21), 199 (41), 197 (47), 137 (34), 135 (100), 77 (13) and 57 (15).

3,4-Epoxyhex-5-en-1-ol 20.-To a solution of 6-(tert-butyl-diphenylsiloxy)-3,4-epoxyhex-1-ene 19 ($19.20 \mathrm{~g}, 54.45 \mathrm{mmol}$) in dry THF ($300 \mathrm{~cm}^{3}$) under nitrogen was added a solution of tetrabutylammonium fluoride (TBAF) $\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 102 \mathrm{~cm}^{3}\right.$, $102 \mathrm{mmol}, 1.87 \mathrm{~mol}$ equiv.) in THF and the dark brown solution
was stirred for 2 h . The solvent was removed under reduced pressure to give a dark brown solid residue, which was chromatographed using dichloromethane and dichlorometh-ane-diethyl ether [$\left(35: 1,20: 1\right.$ and $\left.4: 1\left(R_{\mathrm{f}} 0.28\right)\right]$ and distilled $\left(66-74^{\circ} \mathrm{C}, 0.6 \mathrm{mmHg}\right.$) to afford 3,4-epoxyhex-5-en-1-ol 20 as a liquid ($5.909 \mathrm{~g}, 51.8 \mathrm{mmol}, 95.1 \%$), present as the trans and cis epoxide diastereoisomers ($63: 37 \%$) (Found: $\mathbf{M H}^{+}, 115.0752$. $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}$ requires $m / z 115.0759$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3402,3089$, 1643, 1051, 989, 929 and 877 ; $\delta_{\mathrm{H}}(250 \mathrm{MHz}$) 1.65-1.90 (m, $2-\mathrm{H}_{2}$ cis, $2-\mathrm{H}$ trans and OH), 2.04 ($1 \mathrm{H}, \mathrm{dtd}, J$ 14.6, 6.3 and 4.3 , $2-\mathrm{H}$ trans), 3.04 (1 H , ddd, $J 6.5,4.2$ and 2.3, 3-H trans), 3.23 ($1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $2.1,4-\mathrm{H}$ trans $), 3.27(1 \mathrm{H}, \mathrm{dt}, J 7.3$ and $5,3-\mathrm{H}$ cis), 3.47 (1 H , dd, $J 6.9$ and 4.2, 4-H cis), 3.82 (2 H , br t, $J 5.9$, $1-\mathrm{H}_{2}$), 5.27-5.53 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $5.60(1 \mathrm{H}$, ddd, $J 17.2,9.5$ and $7.0,5-\mathrm{H}$ trans) and 5.74 (1 H , ddd, $J 17.2,10.3$ and $6.9,5-\mathrm{H} \mathrm{cis})$; $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 30.83$ and 34.73 (t), 56.40 (d), 56.83 (d), 58.24 (d), 58.45 (d), 59.10 (t), 59.70 (t), 119.18 (t), 120.48 (t), 132.40 (d) and $135.54(\mathrm{~d}) ; m / z(\mathrm{FAB}) 115\left(\mathrm{MH}^{+}, 26 \%\right), 95(30), 83(39), 69$ (72) and 55 (100).

6-Iodo-3,4-epoxyhex-1-ene 21.-To a solution of imidazole $(0.4493 \mathrm{~g}, 6.6 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.), triphenylphosphine (1.7311 $\mathrm{g}, 6.6 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) and 3,4-epoxyhex-5-en-1-ol 20 ($0.6848 \mathrm{~g}, 6 \mathrm{mmol}$) in dry benzene ($50 \mathrm{~cm}^{3}$) under nitrogen was added iodine ($1.5989 \mathrm{~g}, 6.3 \mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv.) and the reaction stirred was rapidly at $25^{\circ} \mathrm{C}$ for 5 h . The mixture was diluted with diethyl ether ($25 \mathrm{~cm}^{3}$) and extracted successively with saturated aq. sodium hydrogen carbonate ($40 \mathrm{~cm}^{3}$), then saturated aq. sodium thiosulfate $\left(40 \mathrm{~cm}^{3}\right)$ with shaking for a few minutes to discharge any iodine colour remaining, then with water ($2 \times 20 \mathrm{~cm}^{3}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed to leave wet crystals. These were extracted with cold $\left(-20^{\circ} \mathrm{C}\right)$ diethyl ether $\left(5 \times 10 \mathrm{~cm}^{3}\right)$ and the extracts were filtered, evaporated to dryness, and the residue was chromatographed using pentane-diethyl ether as eluent [80:1 and $50: 1\left(R_{\mathrm{f}} 0.23\right)$] to give 6-iodo-3,4-epoxyhex-1-ene 21 as a volatile liquid ($0.8969 \mathrm{~g}, 4.00 \mathrm{mmol}, 66.7 \%$), present as the trans and cis epoxide diastereoisomers (68:32) (Found: M^{+}, 223.970 11. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{IO}$ requires $M, 223.96969$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3085,1642,987,924$ and $878 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.03-2.27(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}_{2}$), $2.94(1 \mathrm{H}$, ddd, $J 6.3,4.8$ and $2.1,4-\mathrm{H}$ trans), $3.17-3.33$ ($\mathrm{m}, 6-\mathrm{H}_{2}, 3-\mathrm{H}$ trans and $4-\mathrm{H}$ cis), $3.49(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $4.3,3-\mathrm{H}$ cis), $5.28-5.41$ ($\mathrm{m}, 1-\mathrm{H}_{2}$ cis and $1-\mathrm{H}$ trans), 5.49 ($1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 2.3 , 1-H trans), $5.60(1 \mathrm{H}$, ddd, $J 17.2,9.3$ and $6.7,2-\mathrm{H}$ trans $)$ and $5.72(1 \mathrm{H}$, ddd, $J 17.1,10.4$ and $6.7,2-\mathrm{H}$ cis); $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 0.22(\mathrm{t}), 0.65(\mathrm{t}), 31.48(\mathrm{t}), 36.65(\mathrm{t}), 56.45$ (d), 58.13 (d), 58.29 (d), 59.81 (d), 119.18 (t), 120.43 (t), 131.91 (d) and 135.00 (d); m / z (EI) $224\left(\mathrm{M}^{+}, 3 \%\right.$), 183 (27), 155 (37), 128 (7), 127(7), 97 (7), 79 (33), 69 (79) and 41 (100).

9-($3^{\prime}, 4^{\prime}$-Epoxyhex-5'-enyl)adenine 22.-Sodium hydride $(0.1584 \mathrm{~g}, 6.6 \mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv.), washed with dry DMF, and adenine ($0.8108 \mathrm{~g}, 6 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv.) were suspended in DMF ($12 \mathrm{~cm}^{3}$) under nitrogen and heated to $65^{\circ} \mathrm{C}$ for 15 min until evolution of hydrogen had subsided. A solution of 6 -iodo-3,4-epoxyhex-1-ene $21(0.6721 \mathrm{~g}, 3 \mathrm{mmol})$ in DMF ($5 \mathrm{~cm}^{3}$) was added and the suspension was stirred at $60-70^{\circ} \mathrm{C}$ for 1.5 h . After filtration, the solvent was distilled off $\left(80^{\circ} \mathrm{C} ; 3 \mathrm{mmHg}\right)$ and the residue was chromatographed using 6% methanol in dichloromethane ($R_{\mathrm{f}} 0.26$) to give 9-($3^{\prime}, 4^{\prime}$-epoxyhex-5'-enyl)adenine 22 as crystals ($0.3676 \mathrm{~g}, 1.59 \mathrm{mmol}, 53.0 \%$), m.p. 137$142{ }^{\circ} \mathrm{C}$ (from MeOH-EtOAc), present as trans and cis epoxide diastereoisomers (70:30) (Found: M^{+}, 231.1345. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ requires $M, 231.1120$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 208 \mathrm{sh}(\varepsilon 14000)$ and $261.0(9400) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3365,3137,1664,1601,1485,937$ and $864 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.01\left(1 \mathrm{H}\right.$, ddt, $J 14.3,7.0$ and $6.2,2^{\prime}-\mathrm{H}$ trans), $2.04\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ cis $), 2.20\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ cis $), 2.35(1 \mathrm{H}$,
dtd, $J 14.3,7.6$ and $4.6,2^{\prime}-\mathrm{H}$ trans $), 2.87(1 \mathrm{H}$, ddd, $J 7.2,4.6$ and 2.1, $3^{\prime}-\mathrm{H}$ trans), 3.02 (1 H , dd, $J 6.9$ and $2.1,4^{\prime}-\mathrm{H}$ trans), 3.12 ($1 \mathrm{H}, \mathrm{ddd}, J 7.4,5.0$ and $4.4,3^{\prime}-\mathrm{H}$ cis), $3.40(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and 4.2, $4^{\prime}-\mathrm{H}$ cis), $4.39\left(2 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.6.6,1^{\prime}-\mathrm{H}_{2}\right), 5.2-5.6(3 \mathrm{H}, \mathrm{m}$, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 6.28\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.84(1 \mathrm{H}, \mathrm{s}$, adenine 8-H cis), $7.86(1 \mathrm{H}, \mathrm{s}$, adenine $8-\mathrm{H}$ trans $), 8.348(1 \mathrm{H}, \mathrm{s}$, adenine $2-\mathrm{H}$ trans) and $8.35\left(1 \mathrm{H}, \mathrm{s}\right.$, adenine $2-\mathrm{H}$ cis); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}$; $\mathrm{CD}_{3} \mathrm{OD}$) $29.22(\mathrm{t}), 33.46(\mathrm{t}), 41.83(\mathrm{t}), 42.16(\mathrm{t}), 57.20(\mathrm{~d}), 57.70$ (d), 58.58 (d), 59.21 (d), 119.78 (t), 119.98 (s), 120.81 (t), 132.90 (d), 136.49 (d. 142.62 (d), 150.55 (s), 153.62 (d) and 157.19 (s); m / z (EI) $231\left(\mathrm{M}^{+}, 85 \%\right), 174(100), 149(58), 148(50), 136(70)$ and 135 (49).

Addition of Thiophenol to 9-(3,4-Epoxyhex-5-enyl)adenine 22 in the Presence of Azoisobutyronitrile.-To a refluxing solution of 9-(3,4-epoxyhex-5-enyl)adenine 22 ($58.9 \mathrm{mg}, 0.255 \mathrm{mmol}$) in dry acetonitrile ($15 \mathrm{~cm}^{3}$)-dry methanol ($5 \mathrm{~cm}^{3}$) under nitrogen were added solutions of thiophenol $(47.2 \mathrm{mg}, 0.428 \mathrm{mmol}, 1.68$ mol equiv.) in acetonitrile ($1.5 \mathrm{~cm}^{3}$) and AIBN $(4.2 \mathrm{mg}, 0.026$ mmol, 0.1 mol equiv.) in acetonitrile ($1 \mathrm{~cm}^{3}$), slowly over a period of 6 h (syringe). After 24 h at reflux, the solution was evaporated to dryness and the residue was rapidly chromatographed with 6% methanol in dichloromethane as eluent to give 9-[3'-hydroxy-4'-(phenylthio)-hex-5'-enyl]adenine 23 as a solid $(7.9 \mathrm{mg}, 0.0231 \mathrm{mmol}, 9.1 \%)$ [($\left.R_{\mathrm{f}} 0.19\right), 6 \%$ methanol in dichloromethane; UV best], m.p. $80-83^{\circ} \mathrm{C}$, present as trans and cis diastereoisomers (70:30) (Found: $\mathrm{M}^{+}, 341.1230 . \mathrm{C}_{17} \mathrm{H}_{19}{ }^{-}$ $\mathrm{N}_{5} \mathrm{OS}$ requires $M, 341.13103$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 213 \mathrm{sh}(\varepsilon$ 38000) and 260.2 (24000); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3434,1644,1606$, 1580, 1479 and 1091; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.97(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 2.19-2.45\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.51-3.66$ ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ trans and $\left.3^{\prime}-\mathrm{H}\right), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J 8.8\right.$ and $5.4,4^{\prime}-\mathrm{H}$ cis $), 4.38(2 \mathrm{H}, \mathrm{t}, J$ 7.3, $1^{\prime}-\mathrm{H}_{2}$ trans $), 4.39\left(2 \mathrm{H}, \mathrm{t}, J 7.5,1^{\prime}-\mathrm{H}_{2}\right.$ cis), $4.90-5.06(2 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime}-\mathrm{H}_{2}\right), 5.77\left(1 \mathrm{H}\right.$, ddd, $J 16.8,10.4$ and $8.9,5^{\prime}-\mathrm{H}$ cis $), 5.81(1 \mathrm{H}$, ddd, $J 17.0,10.2$ and $9.2,5^{\prime}-\mathrm{H}$ trans $), 7.20(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.30(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 8.09(1 \mathrm{H}, \mathrm{s}$, adenine $8-\mathrm{H}$ cis), $8.10(1 \mathrm{H}, \mathrm{s}$, adenine $8-\mathrm{H}$, trans) and $8.22(1 \mathrm{H}, \mathrm{s}$, adenine $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$, 34.86 (t), 35.22 (t) 40.82 (t), 58.94 (d), 59.87 (d), 68.33 (d), 68.60 (d), 117.93 (t), 118.90 (t), 119.49 (s), 127.73 (d), 128.95 (d), 133.17 (d), 133.41 (d), 133.48 (s), 134.10 (d), 134.98 (d), 141.04 (d), 150.15 (s), 152.45 (d) and 155.36 (s); m / z (EI) 341 ($\left.{ }^{+}, 0.5 \%\right)$, 323 (3), 232 (11), 192 (100), 148 (15), 136 (58), 135 (22), 110 (8) and 109 (9); and 9-[3'-hydroxy- 6^{\prime}-(phenylthio)hex-4'-enyl $]$ adenine 24 as a solid ($3.5 \mathrm{mg}, 0.0103 \mathrm{mmol}, 4.0 \%)\left[\left(R_{\mathrm{f}} 0.14\right), 6 \%\right.$ methanol in dichloromethane], m.p. $140-147^{\circ} \mathrm{C}$ (Found: M^{+}, 341.1237. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}^{+}$requires $M, 341.13103$); $\lambda_{\text {max }}{ }^{-}$ $(\mathrm{EtOH}) / \mathrm{nm} 259.0(\varepsilon 18000) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3381,3318$, $3124,1656,1601,1578,1493,1480,1065,966,798,750$ and 694; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.92\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 3.52(2 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.6^{\prime}-\mathrm{H}_{2}\right), 3.97\left(1 \mathrm{H}, \mathrm{q}, J 6.0,3^{\prime}-\mathrm{H}\right), 4.17\left(2 \mathrm{H}, \mathrm{t}, J 7.0,1^{\prime}-\mathrm{H}_{2}\right), 5.53$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15.7\right.$ and $\left.5.7,4^{\prime}-\mathrm{H}\right), 5.70\left(1 \mathrm{H}, \mathrm{dt}, J 15.3\right.$ and $\left.6.9,5^{\prime}-\mathrm{H}\right)$, $7.12(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.96(1 \mathrm{H}$, s , adenine $8-\mathrm{H})$ and $8.22(1 \mathrm{H}, \mathrm{s}$, adenine $2-\mathrm{H}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}$; $\mathrm{CD}_{3} \mathrm{OD}$) 36.34 (t), 37.51 (t), 41.47 (t$), 69.43$ (d), 119.89 (s), 127.10 (d), 127.42 (d), 129.63 (d), 131.02 (d), 136.11 (d), 136.73 (s), 142.49 (d), 150.33 (s), 153.11 (d) and 156.76 (s); m / z (EI) 341 ($\mathrm{M}^{+}, 2 \%$), 323 (13), 233 (20), 232 (100), 188 (33), 136 (95), 135 (28) and 110 (19).

2-\{2-[2-(tert-Butyldiphenylsiloxy)ethoxy]ethoxy\}ethanol 25.

 -To a solution of imidazole ($13.62 \mathrm{~g} 0.2 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv.) and dry triethylene glycol ($150 \mathrm{~g}, 1 \mathrm{~mol}, 10 \mathrm{~mol}$ equiv.) in dry DMF ($200 \mathrm{~cm}^{3}$) under nitrogen was added tert-butyldiphenylsilyl chloride (TBDPSCI) ($27.49 \mathrm{~g}, 0.1 \mathrm{~mol}, 1 \mathrm{~mol}$ equiv.) slowly during 4 h (syringe pump) and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for a further 14 h before being poured onto water (400 cm^{3})-diethyl ether ($400 \mathrm{~cm}^{3}$) and the aqueous layer was extracted with more diethyl ether ($7 \times 150 \mathrm{~cm}^{3}$). The combinedextracts were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness and the residue was chromatographed using light petroleum-ethyl acetate $\left[4: 1\right.$ and $\left.2: 1\left(R_{\mathrm{f}} 0.16\right)\right]$ to give 2-\{2-[2-tert-butyldiphenylsiloxy) ethoxy]ethoxy\}ethanol 25 as an oil ($28.86 \mathrm{~g}, 74.3$ $\mathrm{mmol}, 74.3 \%$) (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 8.7 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}$ Si requires C , $68.00 ; \mathrm{H}, 8.30 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3445,3071,3050,1590,1473$, $1428,1113,740$ and $704 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.22$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.61\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 3.66(4 \mathrm{H}, \mathrm{s}$, $\mathrm{ROCH}_{2} \mathrm{CH}_{2} \mathrm{OR}$ '), 3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2}$), $3.81(2 \mathrm{H}, \mathrm{t}, J 5.2$, TBDPSOCH $)_{2}$), $7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.33(\mathrm{~s}), 27.03(\mathrm{q}), 61.92(\mathrm{t}), 63.65(\mathrm{t}), 70.64(\mathrm{t})$, 70.96 (t), 72.64 (t), 72.75 (t), 127.79 (d), 129.80 (d), 133.86 (s) and 135.75 (d); $m / z(\mathrm{FAB}) 411\left(\mathrm{M}+\mathrm{Na}^{+}, 2 \%\right.$), 253 (13), 199 (40), 197 (44), 165 (96), 135 (100) and 57 (70).

2-\{2-[2-(tert-Butyldiphenylsiloxy)ethoxy]ethoxy\}ethanal 26. -To a solution of oxalyl dichloride $\left(7.01 \mathrm{~cm}^{3}, 80.3 \mathrm{mmol}\right.$, 1.1 mol equiv.) in dry dichloromethane ($175 \mathrm{~cm}^{3}$) at $-65^{\circ} \mathrm{C}$ under nitrogen was added a solution of dry DMSO ($11.4 \mathrm{~cm}^{3}$, $161 \mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv.) in dichloromethane ($35 \mathrm{~cm}^{3}$) over 4 min (dropping funnel). The mixture was mechanically stirred for 24 min , then a solution of 2-\{2-[2-(tert-butyldiphenylsiloxy)ethoxy]ethoxy\}ethanol $25(28.37 \mathrm{~g}, 73.0 \mathrm{mmol})$ in dichloromethane ($150 \mathrm{~cm}^{3}$) was added during 10 min (funnel), and the mixture was then stirred for a further 22 min . Triethylamine ($50.9 \mathrm{~cm}^{3}, 0.365 \mathrm{~mol}, 5 \mathrm{~mol}$ equiv.) was added over a period of 2 min and the resulting suspension was stirred for 5 min at $-65^{\circ} \mathrm{C}$. After warming to room temperature, the mixture was extracted successively with water ($200 \mathrm{~cm}^{3}$) and hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3} ; 250 \mathrm{~cm}^{3}$) and the combined aqueous layers were back-extracted with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and the residue was chromatographed using 1% ethyl acetate and 0.5% triethylamine in dichloromethane ($R_{\mathrm{f}} 0.18$) to give 2-\{2-[2-(tert-butyldiphenylsiloxy)ethoxy]ethoxy\}ethanal 26 as an oil ($20.98 \mathrm{~g}, 54.3 \mathrm{mmol}, 74.3 \%$), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3071$, 3050, 2712, 1737, 1590, 1473, 1428, 1113, 740 and $703 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2, \mathrm{OCH}_{2}\right), 3.70(4 \mathrm{H}, \mathrm{s}$, $\mathrm{ROCH}_{2} \mathrm{CH}_{2} \mathrm{OR}^{\prime}$), $3.82\left(2 \mathrm{H}, \mathrm{t}, J 5.2\right.$, TBDPSOCH ${ }_{2}$), $4.15(2 \mathrm{H}$, d, $\left.J 0.7, \mathrm{CH}_{2} \mathrm{CHO}\right), 7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 9.69 $(1 \mathrm{H}, \mathrm{t}, J 0.7, \mathrm{CHO}) ; \delta_{\mathrm{c}}(22.5 \mathrm{MHz}) 19.17(\mathrm{~s}), 26.87(\mathrm{q}), 63.49$ (t), 70.86 (t$), 71.29$ (t), 72.54 (t$), 76.82$ (t), 127.64 (d), 129.64 (d), 133.70 (s), 135.60 (d) and 200.61 (d); m / z (FAB) $387\left(\mathrm{MH}^{+}\right.$, 0.2%), 239 (9), 199 (24), 197 (49), 165 (39), 135 (100) and 57 (19).

2-[2-(tert-Butyldiphenylsiloxy)ethoxy]ethyl 2,3-Epoxypent-4enyl Ether $27 .{ }^{9}$-To a rapidly mechanically stirred solution of 2-\{2-[2-(tert-butyldiphenylsiloxy)ethoxy]ethoxy\}ethanal 26 ($20.65 \mathrm{~g}, 53.4 \mathrm{mmol}$), 1-allyltetrahydrothiophenium bromide 6 ($13.41 \mathrm{~g}, 64.1 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.) and benzyltriethylammonium chloride ($1.217 \mathrm{~g}, 5.34 \mathrm{mmol}, 0.1 \mathrm{~mol}$ equiv.) in dichloromethane ($150 \mathrm{~cm}^{3}$), cooled to $-15^{\circ} \mathrm{C}$, was added cold ($5^{\circ} \mathrm{C}$) aq. sodium hydroxide ($10 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 150 \mathrm{~cm}^{3}$) over a period of 2.5 min (dropping funnel). The mixture was adjusted to $0^{\circ} \mathrm{C}$ and, after 20 min , was poured onto water $\left(400 \mathrm{~cm}^{3}\right)-$ dichloromethane ($150 \mathrm{~cm}^{3}$). The aqueous layer was backextracted with dichloromethane $\left(4 \times 150 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with water ($100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to leave an oil. This was chromatographed using light petroleum-dichloromethane (1:1 and 1:2) and dichloromethane ($R_{\mathrm{f}} 0.20$) to give 2-[2-(tertbutyldiphenylsiloxy)ethoxy]ethyl 2,3-epoxypent-4-enyl ether 27 as an oil ($14.75 \mathrm{~g}, 34.6 \mathrm{mmol}, 64.7 \%$), present as trans and cis epoxide diastereoisomers ($90: 10$) (Found: C, $70.4 ; \mathrm{H}, 8.4$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 70.38 ; \mathrm{H}, 8.03 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3071,3050,1645,1590,1473,1428,1112,740$ and $704 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 3.07$ [1 H, ddd, $J 5.4,3.1$ and 2.3 , $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})$ trans $], 3.26(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $2.1,=\mathrm{CHCH}$ trans $)$,
$3.32\left[1 \mathrm{H}, \mathrm{dt}, J 6.1\right.$ and $\left.4.4, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O}) c i s\right], 3.47(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and 4.4, $=\mathrm{CHCH}$ cis), $3.52[1 \mathrm{H}, \mathrm{dd}, J 11.7$ and 5.5 , $\left.\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{O})\right], 3.61\left(2 \mathrm{H}, \mathrm{t}, J 5.3, \mathrm{OCH}_{2}\right), 3.66(4 \mathrm{H}, \mathrm{s}$, $\mathrm{ROCCH}_{2} \mathrm{CH}_{2} \mathrm{OR}^{\prime}$), $3.78 \quad[1 \mathrm{H}$, dd, $J 11.7$ and 3.2, $\left.\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{O})\right], 3.82\left(2 \mathrm{H}, \mathrm{t}, J 5.3\right.$, TBDPSOCH H_{2}), 5.26-5.50 (2 $\left.\mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.57(1 \mathrm{H}$, ddd, $J 17.2,9.5$ and $7.0,=\mathrm{CH}$ trans $)$, 5.69 (1 H , ddd, J 17.2, 10.2 and $6.9,=\mathrm{CH}$ cis), $7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.23$ (s), $26.87(\mathrm{q})$, 2×55.85 (d), 56.67 (d), 58.62 (d), 63.55 (t), 68.96 (t), 70.75 (t), $70.91(\mathrm{t}), 71.02(\mathrm{t}), 72.54(\mathrm{t}), 119.35(\mathrm{t}), 120.48(\mathrm{t}), 127.64(\mathrm{~d})$, 129.59 (d), 131.97 (d), 133.76 (s), 135.04 (d) and 135.60 (d); m / z FAB) 239 (9.5%), 209 (28), 199 (22.2), 197 (46), 165 (43), 135 (77), 105 (49), 57 (52) and 55 (100).

2-[2-(2,3-Epoxypent-4-enyloxy)ethoxy]ethanol 28.-To a solution of 2-[2-(tert-butyldiphenylsiloxy)ethoxy]ethyl 2,3-epoxypent-4-enyl ether $27(14.52 \mathrm{~g}, 34.0 \mathrm{mmol}$) in dry THF (200 cm^{3}) was added a solution of TBAF ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 68 \mathrm{~cm}^{3}, 68$ $\mathrm{mmol}, 2 \mathrm{~mol}$ equiv.) in THF. The dark red solution was stirred at $25^{\circ} \mathrm{C}$ for 2 h , evaporated to dryness, and the residue was chromatographed using dichloromethane-ethyl acetate [$3: 2$ ($R_{\mathrm{f}} 0.21$)], to give 2-[2-(2,3-epoxypent-4-enyloxy)ethoxy]ethanol 28 as a slightly coloured oil ($6.28 \mathrm{~g}, 33.4 \mathrm{mmol}, 98.0 \%$), present as trans and cis epoxide diastereoisomers ($83: 27 \%$) (Found: MH^{+}, 189.1127. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{4}$ requires m / z 189.1127); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3489,3090,1645,1109,1070,991,934$ and $881 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}) 2.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.11[1 \mathrm{H}$, ddd, $J 5.5,2.8$ and 2.4 , $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{O})$ trans $], 3.29(1 \mathrm{H}$, dd, $J 6.8$ and $2.1,=\mathrm{CHCH}$ trans), $3.34\left[1 \mathrm{H}, \mathrm{dt}, J 6.5\right.$ and $4.2, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})$ cis $], 3.50(1 \mathrm{H}$, $\mathrm{m},=\mathrm{CHCH}$ cis $), 3.51\left[1 \mathrm{H}, \mathrm{dd}, J 11.7\right.$ and $\left.5.7, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})\right], 3.62$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.3, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ROCH}_{2} \mathrm{CH}_{2} \mathrm{OR}^{\prime}\right.$), $3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2}\right), 3.84[1 \mathrm{H}, \mathrm{dd}, J 11.7$ and 2.9 , $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})\right], 5.30-5.53\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.60(1 \mathrm{H}, \mathrm{ddd}, J 17.2$, 9.4 and $6.9,=\mathrm{CH}$ trans $)$ and $5.71(1 \mathrm{H}$, ddd, $J 17.2,10.2$ and 6.9 , $=\mathrm{CH}$ cis); $\delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 55.64$ (d), 55.80 (d), 56.50 (d), 58.45 (d), $61.27(\mathrm{t}), 68.86(\mathrm{t}), 70.21(\mathrm{t}), 70.64(\mathrm{t}), 70.91(\mathrm{t}), 72.59(\mathrm{t}), 119.35$ (t), 120.48 (t), 132.19 (d) and 135.22 (d); m / z (FAB) $189\left(\mathrm{MH}^{+}\right.$, 22.0%), 171 (19), 127 (29), 119 (26), 107 (53), 89 (63), 83 (77), and 55 (100).

Photolysis of 2-[2-(2,3-Epoxypent-4-enyloxy)ethoxy]ethanol 28 and Bis-(2-hydroxyethyl) Disulfide in Acetonitrile.-A solution of compound $28(0.3764 \mathrm{~g}, 2 \mathrm{mmol})$ and purified bis-(2hydroxyethyl) disulfide ($0.3702 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.) in dry deoxygenated acetonitrile ($20 \mathrm{~cm}^{3}$) was irradiated with UV light from a sunlamp at $0-28^{\circ} \mathrm{C}$ under nitrogen for 7 days. The solution was evaporated to dryness and the residue was chromatographed using dichloromethane-ethyl acetate ($6: 1$ and $1: 1$) and then ethyl acetate, to give some remaining starting material 28 ($72.5 \mathrm{mg}, 0.385 \mathrm{mmol}, 19.3 \%$ recovery) and the following two products (E)-4-(2-hydroxyethylthio)but-2-enal 31 as an oil ($15.6 \mathrm{mg}, 0.107 \mathrm{mmol}, 5.3 \%$) [$\left.R_{\mathrm{f}} 0.46\right), 1: 1$ dichloromethane-ethyl acetate] (Found: $\mathrm{M}^{+}, 146.0397 . \mathrm{C}_{6} \mathrm{H}_{10}$ $\mathrm{O}_{2} \mathrm{~S}$ requires $M, 146.04015$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 219.3$ ($\varepsilon 4225$) and 278.4 (670); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3363,2746,1682,1633$ and 1051; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; deacidified $\left.\mathrm{CDCl}_{3}\right) 1.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.69\left(2 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.39(2 \mathrm{H}$, dd, $J 7.3$ and 1.2 , $\mathrm{SCH} \mathrm{CH}_{2} \mathrm{C}$), $3.76\left(2 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{HOCH}_{2}\right), 6.15(1 \mathrm{H}, \mathrm{ddt}, J 15.5$, 7.7 and $1.2, \mathrm{CHCHO}), 6.78,\left(1 \mathrm{H}, \mathrm{dt}, J 15.5\right.$ and $\left.7.4, \mathrm{SCH}_{2} \mathrm{CH}\right)$ and $9.59(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{HCO}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 32.69(\mathrm{t})$, 34.04 (t), 60.59 (t$), 133.73$ (d), 151.72 (d) and 193.22 (d): m / z (EI) $146\left(\mathrm{M}^{+}, 23 \%\right), 128$ (4), 127 (6), 115 (5), 103 (8), 102 (17), 61 (33), 60 (73), 45 (46) and 41 (100); and 2-\{[2-(2-hydroxy ethoxy)ethoxy]methylthio $\}$ ethanol 30 as an oil $(67.0 \mathrm{mg}, 0.341$ $\mathrm{mmol}, 17.1 \%$) [($R_{\mathrm{f}} 0.23$), ethyl acetate] (Found: MH^{+}, 197.0848. $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}$ requires $m / z 197.08476$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3398,1131,1068$ and 1014; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.85(2 \mathrm{H}, \mathrm{t}, J 5.0$, $\left.\mathrm{SCH}_{2}\right), 3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.73(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{OCH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{HOCH}_{2}\right)$, $3.92(2 \mathrm{H}$, br s, $2 \times \mathrm{OH})$ and $4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 37.48(\mathrm{t}), 61.78(\mathrm{t}), 62.50(\mathrm{t}), 67.54(\mathrm{t}), 69.50(\mathrm{t}), 73.18(\mathrm{t})$ and $75.04(\mathrm{t}) ; m / z(\mathrm{FAB}) 197\left(\mathrm{MH}^{+}, 47 \%\right), 119(57), 107(62)$, 91 (100), 89 (50), 77 (25) and 45 (77).

Aqueous Photolysis of 2-[2-(2,3-Epoxypent-4-enyloxy)ethoxy]ethanol 28 and Bis-(2-hydroxyethyl) Disulfide.-A solution of compound $28(0.3764 \mathrm{~g}, 2 \mathrm{mmol})$ and purified bis(2hydroxyethyl)disulfide ($0.3702 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.) in triply deionised deoxygenated water $\left(20 \mathrm{~cm}^{3}\right)$ was irradiated with UV light from a sunlamp at $25-35^{\circ} \mathrm{C}$ under nitrogen for 7 days. The solution was extracted with dichloromethane $\left(6 \times 7 \mathrm{~cm}^{3}\right)$, the organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness, and the residue was chromatographed using 4:1 dichloromethane-pentane and then 6:1 dichloro-methane-ethyl acetate to give two products: (1,4-oxathian-2$y l)$ acetaldehyde 32 as an oil ($10.0 \mathrm{mg}, 0.0684 \mathrm{mmol}, 3.4 \%)$ [$\left(R_{\mathrm{f}}\right.$ 0.19), 4:1 dichloromethane-pentane] (Found: $\mathrm{M}^{+}, 146.0424$. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ S requires $M, 146.04015$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2732$ and $1724 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.27$ (1 H , dq, $J 13.6$ and $2.0,5-\mathrm{H}$), 2.40 $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.4,3-\mathrm{H}), 2.52(1 \mathrm{H}$, ddd, $J 16.5,4.8$ and 1.6 , $\mathrm{CH}_{2} \mathrm{CHO}$), 2.65 (1 H , ddd, $J 16.5,7.9$ and $2.5, \mathrm{CH}_{2} \mathrm{CHO}$), 2.69 $(1 \mathrm{H}$, br dd, $J 13.5$ and $10.6,3-\mathrm{H}), 2.88(1 \mathrm{H}$, br td, $J 12.7$ and 3.1 , $5-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{td}, J 11.8$ and $2.1,6-\mathrm{H}), 4.14(1 \mathrm{H}$, dddd, $J 10.3$, $7.8,4.8$ and $2.0,2-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 11.9$ and $2.5,6-\mathrm{H})$ and $9.76(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $1.7, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.34$ (t), $31.20(\mathrm{t}), 49.77(\mathrm{t}), 69.27(\mathrm{t}), 73.28(\mathrm{~d})$ and $200.09(\mathrm{~d}) ; \mathrm{m} / \mathrm{z}$ (EI) $146\left(\mathrm{M}^{+}, 47.3 \%\right), 117$ (17), 102 (47), 74 (33) and 46 (100); and (E)-4-(2-hydroxyethylthio)but-2-enal 31 as an oil $(1.1 \mathrm{mg}$, $0.0075 \mathrm{mmol}, 0.38 \%$). Data were identical with those for product isolated in the previous reaction using acetonitrile.

The remaining aqueous layer was evaporated to dryness and the residue was chromatographed using 2% and then 5% methanol in dichloromethane to give 2-\{[2-(2-hydroxyethoxy)ethoxy]methylthio\} ethanol 30 as an oil ($55.3 \mathrm{mg}, 0.282 \mathrm{mmol}$, $14.1 \%)$ [$\left(R_{\mathrm{f}} 0.41\right), 5 \%$ methanol in dichloromethane]. Data were identical with those for the product isolated in the previous reaction using acetonitrile; and 1-[2-(2-hydroxyethoxy)eth-oxy]pent-4-ene-2,3-diol 33 as an oil $(0.1848 \mathrm{~g}, 0.0896 \mathrm{mmol}$, 44.8%) [$\left(R_{\mathrm{f}} 0.22\right), 5 \%$ methanol in dichloromethane], present as trans and cis diol diastereoisomers (10:1) (Found: MH^{+}, 207.123. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{5}$ requires $m / z \quad$ 207.123); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3384,1646,1117$ and $1068 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.04(3 \mathrm{H}$, br s, $3 \times \mathrm{OH}), 3.61\left(2 \mathrm{H}, \mathrm{t}, J 4, \mathrm{OCH}_{2}\right), 3.67\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right.$ and 1 H of $\mathrm{OCH} \mathrm{CHOH}_{2}$), $3.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4, \mathrm{HOCH}_{2}\right), 3.72-3.81$ $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and 1 H of $\left.\mathrm{OCH}_{2} \mathrm{CHOH}\right), 4.17(1 \mathrm{H}, \mathrm{ddt}, J 6.0,4.8$ and $1.2,=\mathrm{CHCHOH}$ isomer 1$), 4.28(1 \mathrm{H}$, ddt, $J 5.7,4.4$ and 1.5 , $=\mathrm{CHCHOH}$ isomer 2), $5.24\left(1 \mathrm{H}, \mathrm{dt}, J 10.6\right.$ and $\left.1.5,=\mathrm{CH}_{2}\right), 5.37$ $\left(1 \mathrm{H}, \mathrm{dt}, J 17.3\right.$ and $\left.1.5,=\mathrm{CH}_{2}\right)$ and $5.91(1 \mathrm{H}, \mathrm{ddd}, J 17.3,10.5$ and $5.7,=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 61.82(\mathrm{t}), 70.22(\mathrm{t}), 70.90$ $(\mathrm{t}), 72.28(\mathrm{t}), 72.41(\mathrm{~d}), 72.74(\mathrm{t}), 73.17(\mathrm{t}), 73.65(\mathrm{~d}), 74.63(\mathrm{~d})$ 116.74 (t), 117.18 (t), 136.76 (d) and $137.10(\mathrm{~d}) ; m / z($ FAB) 207 $\left(\mathrm{MH}^{+}, 67 \%\right), 189(7), 171$ (19), 119 (30), 107 (54), 89 (47), 83 (51) and 45 (100).

3,4-Epoxyhex-5-enyl Toluene-p-sulfonate 34.-To an icecooled solution of 3,4-epoxyhex-5-en-1-ol $20(0.5707 \mathrm{~g}, 5 \mathrm{mmol})$ in dry pyridine ($10 \mathrm{~cm}^{3}$) was added toluene-p-sulfonyl chloride ($2.38 \mathrm{~g}, 12.5 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv.) in parts during 3 min . After 1.5 h at $0^{\circ} \mathrm{C}$ the mixture was diluted with diethyl ether ($20 \mathrm{~cm}^{3}$) and extracted successively with aq. copper sulfate (2%, then 4%, then 20%) until darkening of the aqueous phase ceased, then with water $\left(20 \mathrm{~cm}^{3}\right)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to dryness, and the residue was chromatographed using light petroleum-ethyl acetate [9:1 and 5:1 ($R_{\mathrm{f}} 0.21$)] to give 3,4-epoxyhex-5-enyl toluene-p-sulfonate 34 as an oil ($1.028 \mathrm{~g}, 3.83 \mathrm{mmol}, 76.6 \%$), present as trans and cis epoxide
diastereoisomers (64:36) (Found: MH^{+}, 269.0848. $\mathrm{C}_{13} \mathrm{H}_{17}$ $\mathrm{O}_{4} \mathrm{~S}$ requires $\left.m / z \quad 269.08476\right) ; \quad \lambda_{\text {max }}(\mathrm{MeCN}) / \mathrm{nm} 225.1$ (ε 13000), 261.6 (640) and 272.7 (510); $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3090$, $1644,1599,1495,1359,1177$ and $817 ; \delta_{\mathbf{H}}(250 \mathrm{MHz}) 1.78-2.0$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ cis and $2-\mathrm{H}_{2}$ trans), $2.06(1 \mathrm{H}, \mathrm{dtd}, J 14.8,7.0$ and $4.6,2-\mathrm{H}$ trans $), 2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.88(1 \mathrm{H}, \mathrm{ddd}, J 6.5,4.5$ and 2.1 , 3-H trans), 3.11 (1 H, dd, J 6.4 and 2.0), $4-\mathrm{H}$ trans), 3.13 (1 H, ddd, $J 7.0,5.1$ and $4.3,3-\mathrm{H}$ cis $), 3.42(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $4.3,4-\mathrm{H}$ cis), $4.16\left(2 \mathrm{H}, \mathrm{dd}, J 7.0\right.$ and $5.4,1-\mathrm{H}_{2}$ trans $), 4.17(2 \mathrm{H}$, dd, J6.9 and $5.7,1-\mathrm{H}_{2}$ cis $), 5.25-5.48\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ cis and trans $), 5.53$ (1 H , ddd, $J 17.1,9.2$ and $6.6,5-\mathrm{H}$ trans $), 5.65(1 \mathrm{H}$, ddd, $J 17.2$, 10.2 and $6.5,5-\mathrm{H}$ cis $), 7.36(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$ and $7.80(2 \mathrm{H}, \mathrm{d}, J$ $8.3, \mathrm{ArH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 21.56(\mathrm{q}), 27.68(\mathrm{t}), 31.64(\mathrm{t}), 54.85$ (d), 56.56 (d), 58.29 (d), 67.07 (t), 67.66 (t), $119.35(\mathrm{t}), 120.59(\mathrm{t})$, 127.85 (d), 129.97 (d), 131.75 (d), 135.06 (d), 133.11 (s) and 144.97 (s); m / z (FAB) $269\left(\mathrm{MH}^{+}, 9 \%\right.$), 227 (6), 155 (30), 97 (100), 91 (53) and 69 (50).

3,4-Epoxyhex-5-enyl-1,10-phenanthrolinium Toluene-p-sulfonate 35.-A solution of 3,4-epoxyhex-5-enyl toluene-psulfonate $34(0.1005 \mathrm{~g}, 0.357 \mathrm{mmol})$ and anhydrous $1,10-$ phenanthroline ($0.236 \mathrm{~g}, 1.309 \mathrm{mmol}, 3.5 \mathrm{~mol}$ equiv.) in dry acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ under nitrogen was stirred at $60-70^{\circ} \mathrm{C}$ for 3 days. The deep blue solution was evaporated to dryness and the residue was triturated with ethyl acetate ($\times 2$). The residue was taken up in more dry acetonitrile ($2-5 \mathrm{~cm}^{3}$) and the solution was added slowly to rapidly stirred ethyl acetate $\left(50 \mathrm{~cm}^{3}\right)$ to give a deep blue tar after an initial blue precipitate. After two further precipitations, final traces of phenanthroline were removed by recrystallisation from chloroform-toluene (80 to $-60^{\circ} \mathrm{C}$) to give 3,4-epoxyhex-5-enyl-1,10-phenanthrolinium toluene-p-sulfonate 35 as a dark blue-green-purple tar $(55.7 \mathrm{mg}, 0.124 \mathrm{mmol}$, 33.1%), present as trans and cis epoxide diastereoisomers (2:1) [Found: M^{+}(cation only), 277.1341. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}$requires $m / z \quad 277.1341] ; \quad \lambda_{\max }(\mathrm{MeCN}) / \mathrm{nm} \quad 220.2 \quad(\varepsilon \quad 97000), \quad 270.7$ (68000), 308sh (18000) and 360 sh (3100); $v_{\max }($ film $) / 3066$, $1645,1629,1598,1582,1530,1496,1471,1217,1190,1122$, $1035,1012,721$ and $683 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 2.29(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 2.4\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.06(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $2.0,4-\mathrm{H}$ trans $)$, $3.16(1 \mathrm{H}$, ddd, $J 6.7,4.8$ and $2.0,3-\mathrm{H}$ trans $), 3.35(1 \mathrm{H}$, dd, $J 6.8$ and $4.5,4-\mathrm{H}$ cis $), 3.41(1 \mathrm{H}, \mathrm{td}, J 6.3$ and $4.3,3-\mathrm{H}$ cis $), 5.0-5.6(3$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $\left.6-\mathrm{H}_{2}\right), 6.14\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 7.11(2 \mathrm{H}, \mathrm{d}, J$ $7.9, \mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.96(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 4.3, $\mathrm{ArH}), 8.22(1 \mathrm{H}, \mathrm{d}, J 8.8$, ArH), $8.24(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $5.8, \mathrm{ArH}$), $8.30(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 8.64(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 1.7 , ArH), $9.19(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.4, \mathrm{ArH}), 9.27(1 \mathrm{H}, \mathrm{dd}, J 4.2$ and $1.9, \mathrm{ArH})$ and $9.32(1 \mathrm{H}$, dd, $J 6.0$ and $1.2, \mathrm{ArH}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{CN}\right) 21.29(\mathrm{q}), 30.21(\mathrm{t}), 34.29(\mathrm{t}), 56.37(\mathrm{~d}), 57.18$ (d), 57.84 (d), 58.65 (d), 62.43 (t), 62.77 (t), $120.29(\mathrm{t}), 121.11$ (t), 125.51 (d), 126.41 (d), 126.66 (d), 127.98 (d), 129.34 (d), 131.89 (d), 133.01 (d), 133.12 (d), 134.01 (s), 136.42 (d), 138.15 (s), 138.83 (d), 139.75 (s), 140.93 (s), 146.23 (s), 148.43 (d), 151.00 (d) and 151.98 (d); m / z (FAB) 277 [\mathbf{M}^{+}(cation only), 100%], 194 $\left(\mathrm{PhenCH}_{2}{ }^{+}, 7.7\right), 181\left(\right.$ Phen $\left.+\mathrm{H}^{+}, 49.3\right), 107(7.4), 89$ (10.8) and 77 (13.2).

DNA Cleavage Experiments

Standard Solutions and Reagents.-Electrophoresis buffer: Tris(hydroxymethyl)aminomethane base ($242 \mathrm{~g}, 2 \mathrm{~mol}$), $1 \times$ TAE (Tris acetate)-glacial acetic acid ($57.1 \mathrm{~cm}^{3}, 1 \mathrm{~mol}$) and ethylenediaminetetraacetic acid disodium salt ($18.61 \mathrm{~g}, 50$ mmol) were dissolved in triply deionized water ($50 \mathrm{dm}^{3}$). Final concentrations were Tris acetate ($40 \mathrm{mmol} \mathrm{dm}^{-3}$), EDTA (1 $\mathrm{mmol} \mathrm{dm}{ }^{-3}$), EDTA ($1 \mathrm{mmol} \mathrm{dm}{ }^{-3}$), pH 8.2 . Bromophenol blue gel marker $0.025 \% \mathrm{w} / \mathrm{v}$ solution; a sample (2.5 mg) was dissolved in $10 \% \mathrm{v} / \mathrm{v}$ aq. glycerol ($10 \mathrm{~cm}^{3}$). Ethidium bromide $1 \% \mathrm{w} / \mathrm{v}$ solution; a sample (0.1 g) was dissolved in $1 \times$ Tris
borate-EDTA buffer ($10 \mathrm{~cm}^{3}$) for use as a DNA stain (90 mmol dm^{-3} Tris borate-EDTA).

Reaction buffer: $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonium acetate in triply deionized water, pH 7.05 .
$\Phi X 174$ RF DNA: DNA $\left(0.274 \mu \mathrm{~g} \mathrm{~mm}^{-3}\right)$ was dissolved in a $10 \mathrm{mmol} \mathrm{dm}^{-3}$ Tris- $\mathrm{HCl}-5 \mathrm{mmol} \mathrm{dm}{ }^{-3} \mathrm{NaCl}-0.1 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ Na_{2} EDTA buffer, $\mathbf{p H} 7.4$. Relative molecular mass. 3.6×10^{6} (5386 bp); therefore concentration of DNA was 7.5×10^{-14} moles DNA mm ${ }^{-3}$ ($75 \mathrm{nmol} \mathrm{dm}{ }^{-3}$), or 4.1×10^{-10} moles of base pairs $\mathrm{mm}^{-3}\left(0.41 \mathrm{mmol} \mathrm{dm}{ }^{-3}\right)$. The composition of the DNA was 85% Form I and 15% Form II. This DNA, obtained from Bethesda Research Laboratories, was stored at $4^{\circ} \mathrm{C}$.

Preparation of 0.8% Agarose Gels.-Agarose (0.8 g) (Sigma Grade A 9539) was added to $1 \times$ TAE buffer ($100 \mathrm{~cm}^{3}$) and the mixture was heated to $90-100^{\circ} \mathrm{C}$ until the solution became completely clear. After being degassed carefully for $5-10 \mathrm{~min}$ (water-pump), the solution was allowed to cool to $50-60^{\circ} \mathrm{C}$ and poured into an exactly horizontal $10 \times 10 \mathrm{~cm}$ gel mould (complete with an exactly vertical 20 -tooth well-comb) to set. The gel was stored under $1 \times$ TAE until ready for use, to prevent dehydration.

Electrophoresis of Agarose Gels.-With the gel submerged in the electrophoresis vessel containing $1 \times$ TAE buffer $\left(850 \mathrm{~cm}^{3}\right)$, the comb was removed and the DNA mixtures were applied to the relevant wells by using an accurate pipette (Gilson Pipetman). Ethidium bromide solution $\left(85 \mathrm{~mm}^{3}\right)$ was added to the running buffer and electrophoresis was commenced at 100 V ($3.7 \mathrm{~V} \mathrm{~cm}^{-1}$) for 3 h . The gel was visualised from below with UV light (254 nm) from a transilluminator and was photographed with a Polaroid camera.

Acknowledgements

We thank British Technology Group for support of this work.

References

I K. G. Louie, B. C. Behrens, T. J. Kinsella, T. C. Hamilton, K. R. Grotzinger, W. M. McKoy, M. A. Winker and R. F. Ozols, Cancer Res., 1985, 45, 2110 ; G. Batiist, B. C. Behrens, R. Makuch, T. C. Hamilton, A. G. Katki, K. G. Louie, C. E. Myers and R. F. Ozols, Biochem. Pharmacol., 1986, 35, 2257.
2 G. T. Saez, W. H. Bannister and J. V. Bannister, in Glutathione, Metabolism and Physiological Functions, ed. José Viña, CRC Press, Boston, 1990, ch. 23, p. 237.
3 For an alternative strategy for DNA cleavage using thiyl radicals, see J. Griffiths and J. A. Murphy, Tetrahedron, 1992, 48, 5543; for preliminary accounts of this work, see J. A. Murphy and A. P. Breen, J. Chem. Soc., Chem. Commun., 1993, 191; 193.

4 (a) D. H. R. Barton, R. S. Hay Motherwell and W. B. Motherwell, J. Chem. Soc., Perkin Trans. 1, 1981, 2363; (b) A. G. Davies and B. Muggleton, J. Chem. Soc., Perkin Trans. 2, 1976, 502; (c) J. A. Murphy, C. W. Patterson and N. F. Wooster, Tetrahedron Lett., 1988, 29, 955.
5 (a) J. F. Ward, J. Chem. Educ., 1981, 58, 135; (b) C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor and Francis, London, 1987.

6 D. Schulte-Frohlinde and C. von Sonntag, in Ionizing Radiation Damage to DNA: Molecular Aspects, ed. S. S. Wallace and R. B. Painter, Wiley-Liss, New York, 1990, p. 31; M. F. Janicek, W. A. Haseltine and W. D. Henner, Nucleic Acids Res., 1985, 13, 9011.
7 W. Hiraoka, M. Kuwabara, F. Sato, A. Matsuda and T. Ueda, Nucleic Acids Res., 1990, 18, 1217; S. Fujita and S. Steenken, J. Am. Chem. Soc., 1981, 103, 2540; S. Steenken, Chem. Rev., 1989,89, 503; R. Téoule, Int. J. Radiat. Biol., 1987, 51, 573.
8 H. Suginome and J. B. Wang, J. Chem. Soc., Chem. Commun., 1990, 1629.

9 For synthesis of vinyl epoxides and precursors, see M. Rosenberger, C. Newkom and E. R. Aig, J. Am. Chem. Soc., 1983, 105, 3656.

10 Since completion of this work similar thiyl radical additions to vinyl epoxides followed by hydrogen atom abstraction have appeared: V. Rawal and V. Krishnamurthy, Tetrahedron Lett., 1992, 33, 3439. For tin radical-initiated studies, see S. Kim, S. Lee and J. S. Koh, J. Am. Chem. Soc., 1991, 113, 5107; S. Kim and J. S. Koh, Tetrahedron Lett., 1992, 33, 7391.
11 J. Griffiths and J. A. Murphy, Nat. Prod. Rep., 1993, 10, 551.
12 For addition of allyloxyl radicals generated by other means to alkenes, see M. J. Begley, N. Housden, A. Johns and J. A. Murphy, Tetrahedron, 1991, 47, 8417.
13 A. J. S. C. Vieira and S. Steenken, J. Am. Chem. Soc., 1990, 112, 6986.
14 S. C. Jain, K. K. Bhandary and H. M. Sobell, J. Mol. Biol., 1979, 135, 813.

15 (a) L. S. Harman, D. K. Carver, J. Schreiber and R. P. Mason, J. Biol Chem., 1986, 261, 1642; (b) D. Ross, E. Albano, O. Nilsson and P. Moldéus, Biochem. Biophys. Res. Commun., 1984, 125, 109.
16 K. L. Chan, H. Sugiyama, I. Saito and M. Hara, Tetrahedron Lett., 1991, 32, 7719.
17 L. Kelland, personal communication.
18 H. Maskill, J. Chem. Soc., Perkin Trans. 1, 1987, 1739.
19 Z. Wu, D. R. Mootoo and B. Fraser-Reid, Tetrahedron Lett., 1988, 29, 6549.
20 C. S. Subramaniam, P. J. Thomas, V. R. Mamdapur and M. S. Chadha, J. Chem. Soc., Perkin Trans. 1, 1979, 2346; R. F. Webb, A. J. Duke and J. A. Parsons, J. Chem. Soc., 1961, 4092.
21 M. R. Harnden and R. L. Jarvest, J. Chem. Soc., Perkin Trans. 1, 1989, 2207.
22 R. K. Boeckman Jr., A. B. Charette, T. Asberom and B. H. Johnston, J. Am. Chem. Soc., 1991, 113, 5337.

Paper 3/03496H
Received 17th June 1993 Accepted 7th July 1993

[^0]: 3-(tert-Butyldiphenylsiloxy)propanal 18. ${ }^{22}$-To a solution of

